Skip to main content
Log in

Rate of convergence of the method of fundamental solutions and hyperinterpolation for modified Helmholtz equations on the unit ball

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Approximate solutions of boundary value problems of homogeneous modified Helmholtz equations on the unit ball are explicitly constructed by the method of fundamental solutions (MFS) with the order of approximation provided. Hyperinterpolation is used to find particular solutions of non-homogeneous equations, and the rate of convergence of solving boundary value problems of non-homogeneous equations is derived. Numerical examples are shown to demonstrate the efficiency of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1970)

    Google Scholar 

  2. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer-Verlag, New York (1992)

    MATH  Google Scholar 

  3. Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9, 69–95 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ganesh, M., Graham, I., Sivaloganathan, J.: A pseudospectral three-dimensional boundary integral method applied to a nonlinear model problem from finite elasticity. SIAM J. Numer Anal. 31, 1378–1414 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, New York (1977)

    MATH  Google Scholar 

  6. Golberg, M.A., Chen, C.S.: The method of fundamental solutions for potential Helmholtz and diffusion problems. In: Golberg, M.A. (ed.) Boundary Integral Methods—Numerical and Mathematical Aspects, pp. 103–176. Computational Mechanics Publications, Southampton (1998)

    Google Scholar 

  7. Gronwall, T.: On the degree of convergence of Laplace’s series. Trans. Amer. Math. Soc. 15, 1–30 (1914)

    Article  MathSciNet  Google Scholar 

  8. Herrera, I.: Trefftz method: a general theory. Numer. Methods Partial Differential Equations 16(6), 561–580 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kushpel, A.K., Levesley, J.: Quasi-interpolation on the 2-sphere using radial polynomials. J. Approx. Theory 102, 141–154 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Li, X.: Convergence of the method of fundamental solutions for solving the boundary value problem of modified Helmholtz equation. Appl. Math. Comput. 159, 113–125 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Li, X.: Convergence of the method of fundamental solutions for Poisson’s equation on the unit sphere. Adv. Comput. Math. (to appear)

  12. Li, X.: Rate of approximation by the method of fundamental solutions for Laplace equation on the unit sphere. J. Inf. Comput. Sci. 3(2), 245–254 (2006)

    Google Scholar 

  13. Li, X., Chen, C.S.: A mesh free method using hyperinterpolation and fast Fourier transform for solving differential equations. Eng. Anal. Bound. Elem. 28, 1253–1260 (2004)

    Article  MATH  Google Scholar 

  14. Lorentz, G.G.: Approximation of Functions. Holt, Rinehart and Winston, Inc., New York (1966)

    MATH  Google Scholar 

  15. Müller, C.: Analysis of Spherical Symmetries in Euclidean Spaces. Springer, New York (1998)

    MATH  Google Scholar 

  16. Nikol’skii, S.M., Lizorkin, P.I.: Approximation on the Sphere - A Survey, Approximation and Function Spaces, Banach Center Publications, vol. 22, pp. 281–292. PWN-Polish Scientific Publishers, Warsaw (1989)

    Google Scholar 

  17. Ragozin, D.: Constructive polynomial approximation on spheres and projective spaces. Trans. Amer. Math. Soc. 162, 157–170 (1971)

    Article  MathSciNet  Google Scholar 

  18. Sloan, I.H.: Polynomial interpolation and hyperinterpolation over general regions. J. Approx. Theory 83, 238–254 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. J. Approx. Theory 103, 91–118 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1971)

    MATH  Google Scholar 

  21. Stroud, A.H., Secrest, D.: Gaussian Quadrature Formulas. Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1966)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li.

Additional information

Communicated by Robert Schaback.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X. Rate of convergence of the method of fundamental solutions and hyperinterpolation for modified Helmholtz equations on the unit ball. Adv Comput Math 29, 393–413 (2008). https://doi.org/10.1007/s10444-007-9056-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-007-9056-1

Keywords

Mathematics Subject Classifications (2000)

Navigation