Skip to main content
Log in

Extrapolation of the Nédélec element for the Maxwell equations by the mixed finite element method

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we use the integral-identity argument to obtain asymptotic error expansions for the mixed finite element approximation of the Maxwell equations on a rectangular mesh. The extrapolation method is applied to improve the accuracy of the approximation via an interpolation postprocessing technique. With the extrapolation, the approximation accuracy can be improved from O(h) to O(h 4) in the L 2-norm. Illustrative numerical results are given to demonstrate the higher order accuracy of the extrapolation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bank, R.E., Xu, J.: Asymptotic exact a posteriori error estimators, Part I: grids with superconvergence. SIAM J. Numer. Anal. 41(6), 2294–2312 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bank, R.E., Xu, J.: Asymptotic exact a posteriori error estimators, Part II: general unstructured grids. SIAM J. Numer. Anal. 41(6), 2312–2332 (2003)

    Google Scholar 

  3. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991)

    Google Scholar 

  4. Brandts, J.: Superconvergence of mixed finite element semi-discretization of two time-dependent problems. Appl. Math. 44(1), 43–53 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ciarlet, P.G.: The Finite Element Method for Elliptic Problem. North-Holland, Amsterdam (1978)

  6. Douglas, J., Roberts, J.E.: Mixed finite element methods for second order elliptic problems. Mat. Apl. Comput. 1, 91–103 (1982)

    MATH  MathSciNet  Google Scholar 

  7. Douglas, J., Roberts, J.E.: Global estimates for mixed methods for second order elliptic equations. Math. Comp. 44, 39–52 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fairweather, G., Lin, Q., Lin, Y., Wang, J., Zhang, S.: Asymptotic expansion and Richardson extrapolation of approximate solutions for second order elliptic problems by mixed finite element methods. SIAM J. Numer. Anal. 44(3), 1122–1149 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Falk, R.S., Osborn, J.E.: Error estimates for mixed methods. RAIRO Anal. Numer. 14, 309–324 (1980)

    MathSciNet  Google Scholar 

  10. Girault, V., Raviart, P.: Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, New York (1980)

    Google Scholar 

  11. Lin, J., Lin, Q.: Extrapolation of the Hood–Taylor element for the Stokes problem. Adv. Comput. Math. 22, 115–123 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lin, J., Lin, Q.: Global superconvergence of the mixed finite element methods for 2-D Maxwell equation. J. Comput. Math. 21(5), 637–646 (2003)

    MATH  MathSciNet  Google Scholar 

  13. Lin, Q., Lin, J.: High accuracy approximation of mixed finite element for 2-d Maxwell equation. Acta Math. 23(4), 499–503 (2003)

    MATH  MathSciNet  Google Scholar 

  14. Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Element Methods. HeBei University Publishers (1995)

  15. Lin, Q., Yan, N.: Gloabal superconvergence for Maxwell’s equation. Math. Comp. 69(229), 159–176 (1999)

    Article  MathSciNet  Google Scholar 

  16. Lin, Q., Zhang, S., Yan, N.: Extrapolation and defect correction for diffusion equation with boundary integral conditions. Acta Math. Sci. 17(4), 405–412 (1997)

    MATH  MathSciNet  Google Scholar 

  17. Monk, P.: A mixed finite element for approximating Maxwell’s equation. SIAM J. Numer. Anal. 28(6), 1610–1634 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. Monk, P.: A comparision of three mixed methods for the time-dependent Maxwell’s equations. SIAM J. Statist. Comput. 13(5), 1097–1122 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Monk, P.: Analysis of a finite element method for Maxwell’s equations. SIAM J. Numer. Anal. 29(3), 714–729 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Monk, P.: Superconvergence of finite element approximation to Maxwell’s equation. Numer. Methods Partial Differential Equations 10, 793–812 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Monk, P.: Finite Element Methods for Maxwell Equations. Clarendon Press, Oxford (2003)

    MATH  Google Scholar 

  22. Wang, J.: Mixed finite element methods: a chapter in numerical methods. In: Cai, W., Shi, Z., Shu, C., Xu, J. (eds.) Scientific and Engineering Computing. Academic, New York (1996)

    Google Scholar 

  23. Wang, J.: Superconvergence and extrapolation for mixed finite element method on rectangular domains. Math. Comp. 56, 447–503 (1991)

    Article  Google Scholar 

  24. Zhou, A.: Global superconvergence approximation of the mixed finite element method for the Stokes problem and the linear elasticity equation. RAIRO Modél. Math. Anal. Numér. 30, 401–411 (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hehu Xie.

Additional information

Communicated by A. Zhou.

This research was supported by the National Natural Science Foundation of China (No.10471103), Social Science Foundation of the Ministry of Education of China (06JA630047), Tianjin Natural Science Foundation (07JCYBJC14300).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, H. Extrapolation of the Nédélec element for the Maxwell equations by the mixed finite element method. Adv Comput Math 29, 135–145 (2008). https://doi.org/10.1007/s10444-007-9047-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-007-9047-2

Keywords

Mathematics Subject Classification (2000)

Navigation