Skip to main content
Log in

Adaptive finite element methods for the identification of distributed parameters in elliptic equation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, adaptive finite element method is developed for the estimation of distributed parameter in elliptic equation. Both upper and lower error bound are derived and used to improve the accuracy by appropriate mesh refinement. An efficient preconditioned project gradient algorithm is employed to solve the nonlinear least-squares problem arising in the context of parameter identification problem. The efficiency of our error estimators is demonstrated by some numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York (2000)

    MATH  Google Scholar 

  2. Ascher, U., Haber, E.: Grid refinement and scaling for distributed parameter identification problems. Inverse Problems 17, pp. 571–590 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bangerth, W.: Adaptive finite elment methods for the identification of distributed parameters in the partial differential equations. PhD thesis, University of Heidelberg, Institut für Angewandte Mathematik (2002)

  4. Bank, H.T., Kunisch, K.: Estimation Techniques for Distributed Parameter System. Birkhaäuser, Boston (1989)

    Google Scholar 

  5. Chan, T.F., Tai, X.C.: Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. J. Comput. Phys. 193, 40–66 (2003)

    Article  MathSciNet  Google Scholar 

  6. Chan, T.F., Tai, X.C.: Identification of discontinuous coefficients from elliptic problems using total variation regularization. SIAM J. Sci. Comput. 25(3), 881–904 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Z., Nochetto, R.H.: Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84, 527–548 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    Book  MATH  Google Scholar 

  9. Dobson, D.C., Santosa, F.: An image enhancement techneque for electrical impedance tomography. Inverse Problems 10, 317–334 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    MATH  Google Scholar 

  11. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic Problems I: A linear model problem. SIAM J. Numer. Anal. 28, 43–77 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ewing, R. (ed.) The Mathematics of Reservior Simulation. Frontiers Appl. Math. 1, SIAM, Philadelphia (1984)

    Google Scholar 

  13. Ewing, R.E., Lin, T., Falk, R.S.: Inverse and ill-posed problems in reservoir simulation. In: Inverse and Ill-Posed Problem, pp. 483–497. Academic, Boston, MA (1987)

    Google Scholar 

  14. Ewing, R.E., Lin, T.: Parameter identification problems in single-phase and two-phase flow. In: Proc. 4th Int. Conf. on Control of Distributed Parameter Systems, International Series for Numerical Mathematics 91, pp. 85–108. Birkhauser Verlag, Basel (1989)

    Google Scholar 

  15. Falk, R.S.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44, 28–47 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Falk, R.S.: Error estimates of the numerical identification of a variable coefficient. Math. Comp. 40, 537–546 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feng, T., Gulliksson, M., Liu, W.B.: Adaptive finite element methods for identification of elastic constants. J. Sci. Comput. 26, 217–235 (2006)

    Article  MathSciNet  Google Scholar 

  18. Fletcher, R.: Practical Methods of Optimization. Wiley, New York (2000)

    Google Scholar 

  19. French, D.A., King, J.T.: Approximation of an elliptic control problem by the finite element method. Numer. Funct. Anal. Optim. 12, 299–314 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Geveci, T.: On the approximation of the solution of an optimal control problem governed by an elliptic equation. RAIRO. Anal. Numer. 13, 313–328 (1979)

    MathSciNet  MATH  Google Scholar 

  21. Gunzburger, M.D., Hou, S.L.: Finite dimensional approximation of a class of constrained nonlinear control problems. SIAM J. Control Optim. 34, 1001–1043 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Haber, E., Ascher, U.M., Oldenburg, D.: On optimization techniques for solving nonlinear inverse problems. Inverse Problems 16, 1263–1280 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hettlich, F., Rundell, W.: The determination of a discontinuity in a conductivity from a single boundary measurement. Inverse Problems 14(1), 67–82 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13, 865–888 (2002)

    Article  MathSciNet  Google Scholar 

  25. Huang, Y.Q., Li, R., Liu, W.B., Yan, N.N.: Efficient discretization for finite element approximation of constrained optimal control problems. (submitted)

  26. Kärkkäinen, T.: Error estimates for distributed parameter identification problems. PhD thesis, University of Jyväskylä, Department of Mathematics (1995)

  27. Knowles, G.: Finite dimensional approximation of parabolic time optimal control problems. SIAM J. Control Optim. 20, 414–427 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kufner, A., John, O., Fucik, S.: Function Spaces. Nordhoff, Leyden, The Netherlands (1977)

    MATH  Google Scholar 

  29. Kunisch, K., Liu, W.B., Yan, N.N.: A posteriori error estimates for a model parameter identification problem. In: EUNMA’01 Proceedings, pp. 723–730 (2002)

  30. Ladyzhenskaya, O.A., Urlatseva, H.H.: Linear and Qusilinear Elliptic Equations. Academic, New York (1968)

    Google Scholar 

  31. Li, R., Lin, W.B., Ma, H.P., Tang, T.: Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41, 1321–1349 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, R.: On multi-mesh h-adaptive algorithm. J. Sci. Comput. 24(3), 321–341 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, W.B., Yan, N.N.: A posteriori error estimators for a class of variational inequalities. J. Sci. Comput. 35, 361–393 (2000)

    Article  MathSciNet  Google Scholar 

  34. Liu, W.B., Ma, H.P., Tang, T.: On mixed error estimates for elliptic obstacle problems. Adv. Comput. Math. 15, 261–283 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lowe, B.D., Rundell, W.: Unique recovery of a coefficient in an elliptic equation from input sources. Inverse Problems 11(1), 211–215 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54, 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sun, N.Z.: Inverse Problem in Groundwater Modeling. Kluwer, The Netherlands (1994)

    Google Scholar 

  38. Ulbrich, M.: Nonsmooth Newton-like methods for variational inequalities and constrained optimization problems in function spaces. Habilitation thesis, Fakultät für Mathematik, Technische Universität München (2002)

  39. Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley, New York (1995)

    Google Scholar 

  40. Yeh, W.W.-G.: Review of parameter identification procedures in groundwater hydrology: the inverse problems. Water Resour. Rev. 22, 95–108 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Feng.

Additional information

Communicated by A. Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, T., Yan, N. & Liu, W. Adaptive finite element methods for the identification of distributed parameters in elliptic equation. Adv Comput Math 29, 27–53 (2008). https://doi.org/10.1007/s10444-007-9035-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-007-9035-6

Keywords

Mathematics Subject Classifications (2000)

Navigation