Skip to main content
Log in

Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We study the numerical approximation of distributed optimal control problems governed by semilinear elliptic partial differential equations with pointwise constraints on the control. Piecewise linear finite elements are used to approximate the control as well as the state. We prove that the L 2-error estimates are of order o(h), which is optimal according with the \(C^{0,1}(\overline{\Omega})\) -regularity of the optimal control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl. 23 (2002) 201–229.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Bonnans and H. Zidani, Optimal control problems with partially polyhedric constraints, SIAM J. Control Optim. 37 (1999) 1726–1741.

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Casas, Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints, ESAIM: COCV 8 (2002) 345–374.

    Article  MATH  MathSciNet  Google Scholar 

  4. E. Casas and M. Mateos, Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints, SIAM J. Control Optim. 40 (2002) 1431–1454.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Casas and M. Mateos, Uniform convergence of the FEM. Applications to state constrained control problems, Comput. Appl. Math. 21 (2002) 67–100.

    MathSciNet  MATH  Google Scholar 

  6. E. Casas, M. Mateos and F. Tröltzsch, Error estimates for the numerical approximation of boundary semilinear elliptic control problems, Comput. Optim. Appl. (to appear).

  7. E. Casas and J.-P. Raymond, Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations (to appear).

  8. E. Casas and F. Tröltzsch, Second order necessary and sufficient optimality conditions for optimization problems and applications to control theory, SIAM J. Optim. 13 (2002) 406–431.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1978).

    MATH  Google Scholar 

  10. A. Dontchev and W. Hager, The Euler approximation in state constrained optimal control, Math. Comput. 70 (2000) 173–203.

    MathSciNet  Google Scholar 

  11. A. Dontchev and W. Hager, Second-order Runge–Kutta approximations in constrained optimal control, SIAM J. Numer. Anal. 38 (2000) 202–226.

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl. 44 (1973) 28–47.

    Article  MATH  MathSciNet  Google Scholar 

  13. T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation, RAIRO Numer. Anal. 13 (1979) 313–328.

    MATH  MathSciNet  Google Scholar 

  14. P. Grisvard, Elliptic Problems in Nonsmooth Domains (Pitman, Boston, 1985).

    MATH  Google Scholar 

  15. W. Hager, Multiplier methods for nonlinear optimal control, SIAM J. Numer. Anal. 27 (1990) 1061–1080.

    Article  MATH  MathSciNet  Google Scholar 

  16. W. Hager, Numerical analysis in optimal control, in: Optimal Control of Complex Structures, International Series of Numerical Mathematics, Vol. 139 (Birkhäuser, Basel, 2001) pp. 83–93.

    Google Scholar 

  17. G. Knowles, Finite element approximation of parabolic time optimal control problems, SIAM J. Control Optim. 20 (1982) 414–427.

    Article  MATH  MathSciNet  Google Scholar 

  18. I. Lasiecka, Boundary control of parabolic systems: finite-element approximations, Appl. Math. Optim. 6 (1980) 287–333.

    Article  MATH  MathSciNet  Google Scholar 

  19. I. Lasiecka, Ritz-Galerkin approximation of the time optimal boundary control problem for parabolic systems with Dirichlet boundary conditions, SIAM J. Control Optim. 97 (1984) 477–500.

    Article  MathSciNet  Google Scholar 

  20. K. Malanowski, C. Büskens and H. Maurer, Convergence of approximations to nonlinear control problems, in: Mathematical Programming with Data Perturbation, ed. A.V. Fiacco (Marcel Dekker, New York, 1997) pp. 253–284.

    Google Scholar 

  21. R. McKnight and W. Bosarge, The Ritz–Galerkin procedure for parabolic control problems, SIAM J. Control Optim. 11 (1973) 510–524.

    Article  MATH  MathSciNet  Google Scholar 

  22. P. Raviart and J. Thomas, Introduction à l'analyse numérique des equations aux dérivées partielles (Masson, Paris, 1983).

    MATH  Google Scholar 

  23. J. Raymond and F. Tröltzsch, Second order sufficient optimality conditions for nonlinear parabolic control problems with state-constraints, Discrete Contin. Dynam. Systems 6 (2000) 431–450.

    Article  MATH  MathSciNet  Google Scholar 

  24. D. Tiba and F. Tröltzsch, Error estimates for the discretization of state constrained convex control problems, Numer. Funct. Anal. Optim. 17 (1996) 1005–1028.

    MATH  MathSciNet  Google Scholar 

  25. F. Tröltzsch, Semidiscrete finite element approximation of parabolic boundary control problems-convergence of switching points, in: Optimal Control of Partial Differential Equations II, International Series of Numerical Mathematics, Vol. 78 (Birkhäuser, Basel, 1987) pp. 219–232.

    Google Scholar 

  26. F. Tröltzsch, Approximation of nonlinear parabolic boundary problems by the Fourier method-convergence of optimal controls, Optimization 2 (1991) 83–98.

    Google Scholar 

  27. F. Tröltzsch, On a convergence of semidiscrete Ritz–Galerkin schemes applied to the boundary control of parabolic equations with non-linear boundary condition, Z. Angew. Math. Mech. 72 (1992) 291–301.

    MATH  MathSciNet  Google Scholar 

  28. F. Tröltzsch, Semidiscrete Ritz–Galerkin approximation of nonlinear parabolic boundary control problems-strong convergence of optimal controls, Appl. Math. Optim. 29 (1994) 309–329.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Casas.

Additional information

Communicated by Jesus Carnicer and Juan Manuel Peña (Guest Editors)

This paper is dedicated to Mariano Gasca on the occasion of his 60th birthday

Mathematics subject classifications (2000)

65N30, 65N15, 49M05, 49M25.

This research was partially supported by Ministerio de Ciencia y Tecnología (Spain).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casas, E. Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems. Adv Comput Math 26, 137–153 (2007). https://doi.org/10.1007/s10444-004-4142-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-004-4142-0

Keywords

Navigation