Skip to main content
Log in

Synergistic Effects of Temperature, Oxidation and Multicracking Modes on Damage Evolution and Life Prediction of 2D Woven Ceramic-Matrix Composites under Tension-Tension Fatigue Loading

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this paper, the synergistic effects of temperature, oxidation and multicracking modes on damage evolution and life prediction in 2D woven ceramic-matrix composites (CMCs) have been investigated. The damage parameter of fatigue hysteresis dissipated energy and the interface shear stress were used to monitor the damage evolution inside of CMCs. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface/fiber oxidation model, interface wear model and fibers statistical failure model at elevated temperature, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfy the Global Load Sharing (GLS) criterion. When the broken fibers fraction approaches to the critical value, the composite fatigue fractures. The evolution of fatigue hysteresis dissipated energy, the interface shear stress and broken fibers fraction versus cycle number, and the fatigue life S–N curves of SiC/SiC at 1000, 1200 and 1300 °C in air and steam condition have been predicted. The synergistic effects of temperature, oxidation, fatigue peak stress, and multicracking modes on the evolution of interface shear stress and fatigue hysteresis dissipated energy versus cycle numbers curves have been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Naslain, R.: Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos. Sci. Technol. 64, 155–170 (2004). doi:10.1016/S0266-3538(03)00230-6

    Article  Google Scholar 

  2. Reynaud, P.: Cyclic fatigue of ceramic-matrix composites at ambient and elevated temperatures. Compos. Sci. Technol. 56, 809–814 (1996). doi:10.1016/0266-3538(96)00025-5

    Article  Google Scholar 

  3. Michael, K.: Fatigue behavior of a SiC/SiC composite at 1000°C in air and steam. Master Thesis, Air Force Institute of Technology, Wright-Patterson Air Force base, Ohio, USA. (2010)

  4. Jacob, D.: Fatigue behavior of an advanced SiC/SiC composite with an oxidation inhibited matrix at 1200°C in air and in steam. Master Thesis, Air Force Institute of Technology, Wright-Patterson Air Force base, Ohio, USA. (2010)

  5. Zhu, S.J., Mizuno, M., Nagano, Y., Cao, J.W., Kagawa, Y., Kaya, H.: Creep and fatigue behavior in an enhanced SiC/SiC composite at high temperature. J. Am. Ceram. Soc. 81, 2269–2277 (1998). doi:10.1111/j.1151-2916.1998.tb02621.x

    Article  Google Scholar 

  6. Gowayed, Y., Ojard, G., Santhosh, U., Jefferso, G.: Modeling of crack density in ceramic matrix composites. J. Compos. Mater. 49, 2285–2294 (2015). doi:10.1177/0021998314545188

    Article  Google Scholar 

  7. Evans, A.G., Zok, F.W., McMeeking, R.M.: Fatigue of ceramic matrix composites. Acta Metall. Mater. 43, 859–875 (1995). doi:10.1016/0956-7151(94)00304-Z

    Article  Google Scholar 

  8. Fantozzi, G., Reynaud, P.: Mechanical hysteresis in ceramic matrix composites. Mater. Sci. Eng. Part A. Struct. 521–522, 18–23 (2009). doi:10.1016/j.msea.2008.09.128

    Article  Google Scholar 

  9. Li, L.B., Song, Y.D., Sun, Z.G.: Influence of interface de-bonding on the fatigue hysteresis loops of ceramic matrix composites. Chin. J. Solid Mech. 30, 8–14 (2009)

    Google Scholar 

  10. Li, L.B., Song, Y.D., Sun, Z.G.: Effect of fiber Poisson contraction on fatigue hysteresis loops of ceramic matrix composites. J. Nanjing Univ. Aero. Astro. 41, 181–186 (2009)

    Google Scholar 

  11. Li, L.B., Song, Y.D.: Influnece of fiber failure on fatigue hysteresis loops of ceramic matrix composites. J. Reinf. Plast. Compos. 30, 12–25 (2011). doi:10.1177/0731684410386273

    Article  Google Scholar 

  12. Li, L.B.: Modeling the effect of interface wear on fatigue hysteresis behavior of carbon fiber-reinforced ceramic-matrix composites. Appl. Compos. Mater. 22, 887–920 (2015). doi:10.1007/s10443-015-9442-7

    Article  Google Scholar 

  13. Li, L.B., Song, Y.D., Sun, Y.C.: Estimate interface shear stress of unidirectional C/SiC ceramic matrix composites from hysteresis loops. Appl. Compos. Mater. 20, 693–707 (2013). doi:10.1007/s10443-012-9297-0

    Article  Google Scholar 

  14. Kuo, W.S., Chou, T.W.: Multiple cracking of unidirectional and cross-ply ceramic matrix composites. J. Am. Ceram. Soc. 78, 745–755 (1995). doi:10.1111/j.1151-2916.1995.tb08242.x

    Article  Google Scholar 

  15. Lamon, J.: A micromechanics-based approach to the mechanical behavior of brittle-matrix composites. Compos. Sci. Technol. 61, 2259–2272 (2001). doi:10.1016/S0266-3538(01)00120-8

    Article  Google Scholar 

  16. Lamouroux, F., Camus, G., Thebault, J.: Kinetics and mechanisms of oxidation of 2D woven C/SiC composites: I, experimental approach. J. Am. Ceram. Soc. 77, 2049–2057 (1994). doi:10.1111/j.1151-2916.1994.tb07096.x

    Article  Google Scholar 

  17. Halbig, M.C., McGuffin-Cawley, J.D., Eckel, A.J., Brewer, D.N.: Oxidation kinetics and stress effects for the oxidation of continuous carbon fibers within a microcracked C/SiC ceramic matrix composite. J. Am. Ceram. Soc. 91, 519–526 (2008). doi:10.1111/j.1551-2916.2007.02170.x

    Article  Google Scholar 

  18. Filipuzzi, L., Naslain, R.: Oxidation mechanisms and kinetics of 1D-SiC/C/SiC composite materials: II. Model. J. Am. Ceram. Soc. 77, 467–480 (1994). doi:10.1111/j.1151-2916.1994.tb07016.x

    Article  Google Scholar 

  19. Naslain, R., Guette, A., Rebillat, F., Gallet, S., Lamouroux, F., Filipuzzi, L., Louchet, C.: Oxidation mechanisms and kinetics of SiC-matrix composites and their constituents. J. Mater. Sci. 39, 7303–7316 (2004). doi:10.1023/B:JMSC.0000048745.18938.d5

    Article  Google Scholar 

  20. Lara-Curzio, E.: Analysis of oxidation-assisted stress-rupture of continuous fiber-reinforced ceramic matrix composites at intermediate temperatures. Compos. Part A 30, 549–554 (1999). doi:10.1016/S1359-835X(98)00148-1

    Article  Google Scholar 

  21. Casas, L., Martinez-Esnaola, J.M.: Modelling the effect of oxidation on the creep behavior of fiber-reinforced ceramic matrix composites. Acta Mater. 51, 3745–3757 (2003). doi:10.1016/S1359-6454(03)00189-7

    Article  Google Scholar 

  22. Evans, A.G.: Design and life prediction issues for high-temperature engineering ceramics and their composites. Acta Mater. 45, 23–40 (1997). doi:10.1016/S1359-6454(96)00143-7

    Article  Google Scholar 

  23. Curtin, W.A., Ahn, B.K., Takeda, N.: Modeling brittle and tough stress-strain behavior in unidirectional ceramic matrix composites. Acta Mater. 46, 3409–3420 (1998). doi:10.1016/S1359-6454(98)00041-X

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks the Science and Technology Department of Jiangsu Province for the funding that made this research study possible

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Longbiao.

Ethics declarations

Funding

This study has received the support from the Science and Technology Department of Jiangsu Province through the Natural Science Foundation of Jiangsu Province (Grant No. BK20140813), and the Fundamental Research Funds for the Central Universities (Grant No. NS2016070).

Conflict of Interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longbiao, L. Synergistic Effects of Temperature, Oxidation and Multicracking Modes on Damage Evolution and Life Prediction of 2D Woven Ceramic-Matrix Composites under Tension-Tension Fatigue Loading. Appl Compos Mater 24, 965–981 (2017). https://doi.org/10.1007/s10443-016-9567-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-016-9567-3

Keywords

Navigation