Skip to main content
Log in

A Cohesive Zone Approach for Fatigue-Driven Delamination Analysis in Composite Materials

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

A new model for prediction of fatigue-driven delamination in laminated composites is proposed using cohesive interface elements. The presented model provides a link between cohesive elements damage evolution rate and crack growth rate of Paris law. This is beneficial since no additional material parameters are required and the well-known Paris law constants are used. The link between the cohesive zone method and fracture mechanics is achieved without use of effective length which has led to more accurate results. The problem of unknown failure path in calculation of the energy release rate is solved by imposing a condition on the damage model which leads to completely vertical failure path. A global measure of energy release rate is used for the whole cohesive zone which is computationally more efficient compared to previous similar models. The performance of the proposed model is investigated by simulation of well-known delamination tests and comparison against experimental data of the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

4ENF:

4 point end notched flexure

a :

Crack length

C :

Paris law constant

DCB:

Double cantilever beam

d :

Damage parameter in bi-linear traction-separation law

d s :

Quasi-static damage

E ij :

Young’s modulus in ij direction

G :

Energy release rate

G ij :

Shear modulus in ij direction

G c :

Critical energy release rate

I :

Second moment of area

K :

Penalty stiffness

M :

Moment applied to specimen

MMB:

Mixed-mode bending

m :

Paris law constant

N :

Number of cycles

P :

Load applied to specimen

R :

Load ratio

T 0 i :

Interface strength in mode i

T i :

Traction on interface in i direction

Δ 0i :

Initial separation in mode i

Δ fi :

Final separation in mode i

η :

Benzeggagh-Kenane law parameter

v ij :

Poisson’s ratio in ij direction

ρ :

Moment ratio in mixed-mode bending specimen

β :

Mode ratio

References

  1. Gustafson, C.-G., Hojo, M.: Delamination fatigue crack growth in unidirectional graphite/epoxy laminates. J. Reinf. Plast. Compos. 6(1), 36–52 (1987)

    Article  Google Scholar 

  2. O’brien, T.: Characterization of delamination onset and growth in a composite laminate. Damage in composite materials. ASTM Spec. Tech. Publ. 775(2), 140–167 (1982)

    Google Scholar 

  3. Tzu-Chiang, W., Shih, C.F., Zhigang, S.: Crack extension and kinking in laminates and bicrystals. Int. J. Solids Struct. 29(3), 327–344 (1992)

    Article  Google Scholar 

  4. Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7(1), 55–129 (1962)

    Article  Google Scholar 

  5. Dugdale, D.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8(2), 100–104 (1960)

    Article  Google Scholar 

  6. Salimi-Majd, D., Azimzadeh, V., Mohammadi, B.: Loading analysis of composite wind turbine blade for fatigue life prediction of adhesively bonded root joint. Appl. Compos. Mater. 22(3), 269–287 (2015)

    Article  Google Scholar 

  7. Campilho, R.D., Banea, M.D., Neto, J., da Silva, L.F.: Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer. Int. J. Adhes. Adhes. 44, 48–56 (2013)

    Article  Google Scholar 

  8. van den Bosch, M.J., Schreurs, P.J.G., Geers, M.G.D.: A cohesive zone model with a large displacement formulation accounting for interfacial fibrilation. Eur. J. Mech. A. Solids 26(1), 1–19 (2007). doi:10.1016/j.euromechsol.2006.09.003

    Article  Google Scholar 

  9. Ashouri Vajari, D., Legarth, B.N., Niordson, C.F.: Micromechanical modeling of unidirectional composites with uneven interfacial strengths. Eur. J. Mech. A. Solids 42, 241–250 (2013). doi:10.1016/j.euromechsol.2013.06.008

    Article  Google Scholar 

  10. Davies, G., Guiamatsia, I.: The problem of the cohesive zone in numerically simulating delamination/debonding failure modes. Appl. Compos. Mater. 19(5), 831–838 (2012)

    Article  Google Scholar 

  11. Khokhar, Z.R., Ashcroft, I.A., Silberschmidt, V.V.: Interaction of matrix cracking and delamination in cross-ply laminates: simulations with stochastic cohesive zone elements. Appl. Compos. Mater. 18(1), 3–16 (2011)

    Article  Google Scholar 

  12. Bak, B.L., Sarrado, C., Turon, A., Costa, J.: Delamination under fatigue loads in composite laminates: a review on the observed phenomenology and computational methods. Appl. Mech. Rev. 66(6), 060803 (2014)

    Article  Google Scholar 

  13. Pascoe, J., Alderliesten, R., Benedictus, R.: Methods for the prediction of fatigue delamination growth in composites and adhesive bonds—a critical review. Eng. Fract. Mech. 112, 72–96 (2013)

    Article  Google Scholar 

  14. Foulk, J.W., Allen, D.H., Helms, K.L.E.: A model for predicting the damage and environmental degradation dependent life of SCS-6/Timetal®21S [0]4 metal matrix composite. Mech. Mater. 29(1), 53–68 (1998). doi:10.1016/S0167-6636(97)00070-7

    Article  Google Scholar 

  15. Tvergaard, V.: Effect of fibre debonding in a whisker-reinforced metal. Mater. Sci. Eng. A 125(2), 203–213 (1990). doi:10.1016/0921-5093(90)90170-8

    Article  Google Scholar 

  16. de-Andrés, A., Pérez, J.L., Ortiz, M.: Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading. Int. J. Solids Struct. 36(15), 2231–2258 (1999). doi:10.1016/S0020-7683(98)00059-6

    Article  Google Scholar 

  17. Nguyen, O., Repetto, E.A., Ortiz, M., Radovitzky, R.A.: A cohesive model of fatigue crack growth. Int. J. Fract. Mech. 110(4), 351–369 (2001). doi:10.1023/A:1010839522926

    Article  Google Scholar 

  18. Roe, K., Siegmund, T.: An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng. Fract. Mech. 70(2), 209–232 (2003)

    Article  Google Scholar 

  19. Yang, B., Mall, S., Ravi-Chandar, K.: A cohesive zone model for fatigue crack growth in quasibrittle materials. Int. J. Solids Struct. 38(22–23), 3927–3944 (2001). doi:10.1016/S0020-7683(00)00253-5

    Article  Google Scholar 

  20. Robinson, P., Galvanetto, U., Tumino, D., Bellucci, G., Violeau, D.: Numerical simulation of fatigue‐driven delamination using interface elements. Int. J. Numer. Methods Eng. 63(13), 1824–1848 (2005)

    Article  Google Scholar 

  21. Muñoz, J.J., Galvanetto, U., Robinson, P.: On the numerical simulation of fatigue driven delamination with interface elements. Int. J. Fatigue 28(10), 1136–1146 (2006). doi:10.1016/j.ijfatigue.2006.02.003

    Article  Google Scholar 

  22. Amiri-Rad, A., Mashayekhi, M., van der Meer, F.P., Hadavinia, H.: A two-scale damage model for high cycle fatigue delamination in laminated composites. Compos. Sci. Technol. 120, 32–38 (2015)

    Article  Google Scholar 

  23. Turon, A., Costa, J., Camanho, P., Dávila, C.: Simulation of delamination in composites under high-cycle fatigue. Compos. Part A Appl. Sci. 38(11), 2270–2282 (2007)

    Article  Google Scholar 

  24. Harper, P.W., Hallett, S.R.: A fatigue degradation law for cohesive interface elements–development and application to composite materials. Int. J. Fatigue 32(11), 1774–1787 (2010)

    Article  Google Scholar 

  25. Kawashita, L.F., Hallett, S.R.: A crack tip tracking algorithm for cohesive interface element analysis of fatigue delamination propagation in composite materials. Int. J. Solids Struct. 49(21), 2898–2913 (2012)

    Article  Google Scholar 

  26. Needleman, A.: Continuum model for void nucleation by inclusion debonding. J. Appl. Mech. Tech. ASME 54(3), 525–531 (1987)

    Article  Google Scholar 

  27. Xu, X.P., Needleman, A.: Numerical simulations of fast crack growth in brittle solids. J. Mech. Phys. Solids 42(9), 1397–1434 (1994). doi:10.1016/0022-5096(94)90003-5

    Article  Google Scholar 

  28. Needleman, A.: An analysis of intersonic crack growth under shear loading. J. Appl. Mech. 66(4), 847–857 (1999). doi:10.1115/1.2791788

    Article  Google Scholar 

  29. Mi, Y., Crisfield, M.A., Davies, G.A.O., Hellweg, H.B.: Progressive delamination using interface elements. J. Compos. Mater. 32(14), 1246–1272 (1998). doi:10.1177/002199839803201401

    Article  Google Scholar 

  30. Williams, J.G., Hadavinia, H.: Analytical solutions for cohesive zone models. J. Mech. Phys. Solids 50(4), 809–825 (2002). doi:10.1016/S0022-5096(01)00095-3

    Article  Google Scholar 

  31. Turon, A., Camanho, P.P., Costa, J., Dávila, C.: A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech. Mater. 38(11), 1072–1089 (2006)

    Article  Google Scholar 

  32. Blanco, N., Gamstedt, E.K., Asp, L.E., Costa, J.: Mixed-mode delamination growth in carbon–fibre composite laminates under cyclic loading. Int. J. Solids Struct. 41(15), 4219–4235 (2004). doi:10.1016/j.ijsolstr.2004.02.040

    Article  Google Scholar 

  33. Benzeggagh, M.L., Kenane, M.: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 56(4), 439–449 (1996). doi:10.1016/0266-3538(96)00005-X

    Article  Google Scholar 

  34. Paris, P., Erdogan, F.: A critical analysis of crack propagation laws. J. Basic Eng. 85(4), 528–533 (1963)

    Article  Google Scholar 

  35. Paris, P.C., Gomez, M.P., Anderson, W.E.: A rational analytic theory of fatigue. Trend Eng. 13(1), 9–14 (1961)

    Google Scholar 

  36. Van Paepegem, W., Degrieck, J.: Fatigue degradation modelling of plain woven glass/epoxy composites. Compos. Part A Appl. Sci. 32(10), 1433–1441 (2001)

    Article  Google Scholar 

  37. Asp, L.E., Sjögren, A., Greenhalhg, E.S.: Delamination growth and thresholds in a carbon/epoxy composite under fatigue loading. J. Compos. Tech. Res. 23(2), 55–68 (2001)

    Article  Google Scholar 

  38. Juntti, M., Asp, L.E., Olsson, A.: Assessment of evaluation methods for the mixed-mode bending test. J. Compos. Tech. Res. 21(1), 37–48 (1999)

    Article  Google Scholar 

  39. Williams, J.G.: On the calculation of energy release rates for cracked laminates. Int. J. Fract. Mech. 36(2), 101–119 (1988). doi:10.1007/BF00017790

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Amiri-Rad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri-Rad, A., Mashayekhi, M. A Cohesive Zone Approach for Fatigue-Driven Delamination Analysis in Composite Materials. Appl Compos Mater 24, 751–769 (2017). https://doi.org/10.1007/s10443-016-9543-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-016-9543-y

Keywords

Navigation