Skip to main content
Log in

Oblique Low-Velocity Impact on Fiber-Metal Laminates

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In the present study, oblique low-velocity impact (OLVI) on GLARE fiber-metal laminates (FMLs) has been modeled using finite element analysis (FEA) for the first time. Two types of boundary conditions (BCs) can be considered for impactor in the low-velocity impact: constrained (if the impact angle between the impactor and target remains constant during and after the contact) and free (if rotation of the impactor and change in angle with respect to the target is likely) BCs. The more details of these BCs are described in the paper. The OLVI is numerically modeled for four different impact angles. Effect of BC types and impact angle on energy absorption, as well as maximum contact force, is investigated. Due to lack of experimental results for the OLVI on FMLs in the open literature, the authors had to validate the present modelling via the experimental data of the perpendicular low-velocity impact. An excellent agreement was obtained between the numerical results and the experimental data. The results of present study reveal that at the same impact angle, the maximum contact force and energy absorption are greater for the constraint oblique impact (Constrained OLVI). In addition, in the Constrained OLVI, the maximum energy absorption occurs at larger impact angles, while this occurs at smaller impact angles for free oblique impact (Free OLVI). The conclusion to be drawn from all of the cases studied in this paper is that the maximum contact force occurs in the Constrained OLVI with smaller impact angles. Moreover, the maximum energy absorption takes place in the Constrained OLVI at higher impact angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sinmazçelik T., Avcu E., Bora M.Ö., Çoban O.: A review: fibre metal laminates, background, bonding types and applied test methods. Mater. Design. 32, 3671–3685 (2011)

    Article  Google Scholar 

  2. Sinke J.: Manufacturing of GLARE parts and structures. Appl. Compos. Mater. 10(4), 293–305 (2003)

    Article  Google Scholar 

  3. Beaumont P.W.R., Riewald P.G., Zweben C.: Methods for improving the impact resistance of composite materials,“foreign object impact damage to composites, ASTM STP 568. Am. Soc. Testing. Mater. 134, –158 (1974)

  4. Asundi A., Choi A.Y.N.: Fiber metal laminates: an advanced material for future aircraft. J. Mater. Process. Technol. 63(1–3), 384–394 (1997)

    Article  Google Scholar 

  5. Botelho E.C., Silva R.A., Pardini L.C., Rezende M.C.: A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Mater. Res. 9(3), 247–256 (2006)

    Article  Google Scholar 

  6. Castrodeza E.M., Bastian F.L., Ipiña J.E.P.: Critical fracture toughness, JC and δ5C, of unidirectional fibre–metal laminates. Thin-Walled Struct. 41(12), 1089–1101 (2003)

    Article  Google Scholar 

  7. Vermeeren C.A.J.R., Beumler T., Kanter J.L.C.G.: D., Jagt, O.C.V.D., out, B.C.L.: glare design aspects and philosophies. Appl. Compos. Mater. 10(4), 257–276 (2003)

    Article  Google Scholar 

  8. Vogelesang L.B., Vlot A.: Development of fibre metal laminates for advanced aerospace structures. J. Mater. Process. Technol. 103, 1–5 (2000)

    Article  Google Scholar 

  9. Lawcock G.D., Ye L., Mai Y.W., Sun C.T.: Effects of fibre/matrix adhesion on carbon-fibre-reinforced metal laminates—II. Impact behaviour. Combust. Sci. Technol. 57(12), 1621–1628 (1998)

    Article  Google Scholar 

  10. Sadighi M., Alderliesten R.C., Benedictus R.: Impact resistance of fiber-metal laminates: a review. Int J Impact Eng. 49, 77–90 (2012)

    Article  Google Scholar 

  11. Villanueva G.R., Cantwell W.J.: The mechanical properties of fibre-metal laminates based on glass fibre reinforced polypropylene. Combust. Sci. Technol. 60, 1085–1094 (2000)

    Article  Google Scholar 

  12. Cortes P., Cantwell W.J.: The impact properties of high-temperature fiber-metal laminates. J. Compos. Mater. 41(5), 613–632 (2007)

    Article  Google Scholar 

  13. Fan J., Cantwell W., Guan Z.: The low-velocity impact response of fiber-metal laminates. J. Reinf. Plast. Compos. 30(1), 26–35 (2011)

    Article  Google Scholar 

  14. Starikov R.: Assessment of impact response of fiber metal laminates. Int J Impact Eng. 59, 38–45 (2013)

    Article  Google Scholar 

  15. Nakatani H., Kosaka T., Osaka K., Sawada Y.: Damage characterization of titanium/GFRP hybrid laminates subjected to low-velocity impact. Compos Part A-Appl S. 42, 772–781 (2011)

    Article  Google Scholar 

  16. Yaghoubi A.S., Liu Y., Liaw B.: Low-velocity impact on GLARE 5 fiber-metal laminates: influences of specimen thickness and impactor mass. J Aerosp Eng. 25(3), 409–420 (2012)

    Article  Google Scholar 

  17. Taheri-Behrooz F., Shokrieh M.M., Yahyapour I.: Effect of stacking sequence on failure mode of fiber metal laminates under low-velocity impact. Iran Polym J. 23, 147–152 (2014)

    Article  Google Scholar 

  18. Zhang H., Gn S.W.: An, J., Xiang, Y., Yang, J.L.: impact behaviour of GLAREs with MWCNT modified epoxy resins. Exp Mech. 54(1), 83–93 (2014)

    Article  Google Scholar 

  19. Morinière F.D., Alderliesten R.C., Benedictus R.: Modelling of impact damage and dynamics in fibre-metal laminates - a review. Int. J. Impact. Eng. 67, 27–38 (2014)

    Article  Google Scholar 

  20. Sadighi M., Pärnänen T., Alderliesten R.C., Sayeaftabi M., Benedictus R.: Experimental and numerical investigation of metal type and thickness effects on the impact resistance of fiber metal laminates. Appl. Compos. Mater. 19(3), 545–559 (2012)

    Article  Google Scholar 

  21. Liu Y., Liaw B.: Effects of constituents and lay-up configuration on drop-weight tests of fiber-metal laminates. Appl. Compos. Mater. 17(1), 43–62 (2010)

    Article  Google Scholar 

  22. Pärnänen T., Vänttinen A., Kanerva M., Jokinen J., Saarela O.: The effects of debonding on the low-velocity impact response of steel-CFRP fibre metal laminates. Appl. Compos. Mater. (2016). doi:10.1007/s10443-016-9505-4

    Google Scholar 

  23. Cicco D.D., Asaee Z., Taheri F.: Low-velocity impact damage response of fiberglass/magnesium fiber-metal laminates under different size and shape impactors. Mech Adv Mater Struct. (2016). doi:10.1080/15376494.2016.1162343

    Google Scholar 

  24. Ma Y.E., Hu H.W., Xiong X.F., Zhang Q.M.: Experimental and Numerical Investigation of Fibre-Metal Laminates during Low-Velocity Impact Loading. Paper presented at the 13th International Conference on Fracture, Beijing (2013)

    Google Scholar 

  25. Guan Z.W., Cantwell W.J., Abdullah R.: Numerical modeling of the impact response of fiber–metal laminates. Polym. Compos. 30, 603–611 (2009)

    Article  Google Scholar 

  26. Zhou J., Guan Z., Cantwell W.: Numerical modelling of perforation impact damage of fibre metal laminates. Paper presented at the ICCM2014, Cambridge, England (2014)

    Google Scholar 

  27. Hibbitt D., Karlsson B., Sorensen P.: ABAQUS 6.14 User’s Manuals. In: Dassault Systèmes Simulia Corp., Providence. Rhode Island, USA (2014)

    Google Scholar 

  28. Antoinat L., Kubler R., Barou J.-L., Viot P., Barrallier L.: Perforation of aluminium alloy thin plates. Intern J Impact Eng. 75, 255–267 (2015)

    Article  Google Scholar 

  29. Yaghoubi A.S., Liaw B.: Thickness influence on ballistic impact behaviors of GLARE 5 fiber-metal laminated beams: experimental and numerical studies. Comput Struct. 94, 2585–2598 (2012)

    Article  Google Scholar 

  30. Meybodi M.H., Saber-Samandari S., Sadighi M., Bagheri M.R.: Low-velocity impact response of a nanocomposite beam using an analytical model. Lat Am J Solids Stru. 12, 333–354 (2015)

    Article  Google Scholar 

  31. Abrate, S.: Impact on composite structures. Cambridge university press, (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Heydari-Meybodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari-Meybodi, M., Mohammadkhani, H. & Bagheri, M.R. Oblique Low-Velocity Impact on Fiber-Metal Laminates. Appl Compos Mater 24, 611–623 (2017). https://doi.org/10.1007/s10443-016-9530-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-016-9530-3

Keywords

Navigation