Skip to main content
Log in

Numerical Modelling and Damage Assessment of Rotary Wing Aircraft Cabin Door Using Continuum Damage Mechanics Model

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The prediction of ultimate strength remains the main challenge in the simulation of the mechanical response of composite structures. This paper examines continuum damage model to predict the strength and size effects for deformation and failure response of polymer composite laminates when subjected to complex state of stress. The paper also considers how the overall results of the exercise can be applied in design applications. The continuum damage model is described and the resulting prediction of size effects are compared against the standard benchmark solutions. The stress analysis for strength prediction of rotary wing aircraft cabin door is carried out. The goal of this study is to extend the proposed continuum damage model such that it can be accurately predict the failure around stress concentration regions. The finite element-based continuum damage mechanics model can be applied to the structures and components of arbitrary configurations where analytical solutions could not be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hinton M.J., Soden P.D.: Predicting failure in composite laminates: the background to the exercise. Compos. Sci. Technol. 58, 1001–1010 (1998)

    Article  Google Scholar 

  2. Maimí P., Camanho P.P., Mayugo J.A., Dávila C.G.: A continuum damage model for composite laminates: part I - constitutive model. Mech. Mater. 39, 897–908 (2007)

    Article  Google Scholar 

  3. Maimí P., Camanho P.P., Mayugo J.A., Dávila C.G.: A continuum damage model for composite laminates: part II - computational implementation and validation. Mech. Mater. 39, 909–919 (2007)

    Article  Google Scholar 

  4. Camanho P.P., Turon A., Costa J., Dávila C.G.: A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech. Mater. 38(11), 1072–1089 (2006)

    Article  Google Scholar 

  5. Dvorak G.J., Laws N.: Analysis of first ply failure in composite laminates. Eng. Fract. Mech. 25, 763–770 (1986)

    Article  Google Scholar 

  6. Camanho P.P., Da’vila C.G., Pinho S.T., Iannucci L., Robinson P.: Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear. Compos. Part A. 37, 165–176 (2006)

    Article  Google Scholar 

  7. Parvizi A., Garrett K., Bailey J.: Constrained cracking in glass fibre reinforced epoxy cross-ply laminates. J. Mater. Sci. 13, 195–201 (1978)

    Article  Google Scholar 

  8. Standard test methods for mode I inter-laminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites, ASTM D5528–01. West Conshohocken (PA), USA: American Society for Testing and Materials (ASTM)

  9. Martin R, Elms T, Bowron S., : Characterization of mode II delamination using the 4ENF, Proceedings of the 4th European conference on composites: testing and standardization, Lisbon (1998)

  10. Lopes C.S., Camanho P.P., Gürdal Z., Maimi P., Gonzalez E.V.: Low-velocity impact damage on dispersed stacking sequence laminates. Part II: numerical simulations. Compos. Sci. Technol. 69, 937–947 (2009)

    Article  Google Scholar 

  11. Overgaard L.C.T., Lund E., Camanho P.P.: A methodology for the structural analysis of composite wind turbine blades under geometric and material induced instabilities. Comput. Struct. 88, 1092–1109 (2010)

    Article  Google Scholar 

  12. Mabson, G., Lyle, R.D., Dopker, B., Hoyt, D.M., Baylor, J.S., and Graesser, D.L., : Fracture Interface Elements for Static and Fatigue Analysis, 16th International Conference on Composite Materials, Kyoto, Japan (2007)

  13. van der Meer F.P., Sluys L.J.: Continuum models for the analysis of progressive failure in composite laminates. J. Compos. Mater. 40, 2131–2156 (2009)

    Article  Google Scholar 

  14. van der Meer F.P., Oliver C., Sluys L.J.: Computational analysis of progressive failure in a notched laminate including shear nonlinearity and fiber failure. Compos. Sci. Technol. 70(4), 692–700 (2010)

    Article  Google Scholar 

  15. Iarve E.V., Mollenhauer D., Kim R.: Theoretical and experimental investigation of stress redistribution in open hole composite laminates due to damage accumulation. Compos. A: Appl. Sci. Manuf. 36, 163–171 (2005)

    Article  Google Scholar 

  16. Maimı´ P, Camanho PP, Mayugo JA, Da’vila CG. : A thermodynamically consistent damage model for advanced composites. NASA Technical Memorandum 214282, National Aeronautics and Space Administration (2006)

  17. Joffe R., Krasnikovs A., Varna J.: COD-based simulation of transverse cracking and stiffness reduction in (S/90n)s laminates. Compos. Sci. Technol. 61, 637–656 (2001)

    Article  Google Scholar 

  18. Hashin Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47, 329–334 (1980)

    Article  Google Scholar 

  19. Catalanotti G., Camanho P.P., Xavier J., Dávila C.G., Marques A.T.: Measurement of resistance curves in the longitudinal failure of composites using digital image correlation. Compos. Sci. Technol. 70, 1986–1993 (2010)

    Article  Google Scholar 

  20. Camanho P.P., Maimí P., Dávila C.G.: Prediction of size effects in notched laminates using continuum damage mechanics. Compos. Sci. Technol. 67(13), 2715–2727 (2007)

    Article  Google Scholar 

  21. Wisnom M.R.: Size effects in the testing of fibre-reinforced composites. Compos. Sci. Technol. 59, 1937–1957 (1999)

    Article  Google Scholar 

  22. Bazˇant Z.P., Zhou Y., Nova’k D., Daniel I.M.: Size effect on flexural strength of fiber-composite laminates. J. Eng. Mater. Technol. 126, 29–37 (2004)

    Article  Google Scholar 

  23. Bazˇant Z.P.: Size effect. Int. J. Solids Struct. 37, 69–80 (2000)

    Article  Google Scholar 

  24. Parvizi A., Garrett K., Bailey J.: Constrained cracking in glass fibre reinforced epoxy cross-ply laminates. J. Mater. Sci. 13, 195–201 (1978)

    Article  Google Scholar 

  25. Waddoups M.E., Eisenmann J.R., Kaminski B.E.: Macroscopic fracture mechanics of advanced composite materials. J. Compos. Mater. 5, 446–454 (1971)

    Article  Google Scholar 

  26. Pinho, ST. Modelling failure of laminated composites using physically-based failure models, PhD thesis. Department of Aeronautics, Imperial College London, UK, 2005

  27. Pinho S.T., Robinson P., Iannucci L.: Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Compos. Sci. Technol. 66, 2069–2079 (2006)

    Article  Google Scholar 

  28. Gangadhara Rao T Boyina, R. Vijaya Kumar, V.V. Subbarao., Damage Assesment of Rotary Wing Aircraft Cabin Door using Continuum Damage Mechanics Model, Proceedings of 72nd American Helicopter Society and Exhibition, West Palm Beach, Florida, USA, 2016

  29. ANSYS User Manual, Release 17.0, ANSYS Inc.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijaya Kumar Rayavarapu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyina, G.R.T., Rayavarapu, V.K. & V. V., S.R. Numerical Modelling and Damage Assessment of Rotary Wing Aircraft Cabin Door Using Continuum Damage Mechanics Model. Appl Compos Mater 24, 235–250 (2017). https://doi.org/10.1007/s10443-016-9524-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-016-9524-1

Keywords

Navigation