Skip to main content
Log in

Circular Functions Based Comprehensive Analysis of Plastic Creep Deformations in the Fiber Reinforced Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Analytically based model is presented for behavioral analysis of the plastic deformations in the reinforced materials using the circular (trigonometric) functions. The analytical method is proposed to predict creep behavior of the fibrous composites based on basic and constitutive equations under a tensile axial stress. New insight of the work is to predict some important behaviors of the creeping matrix. In the present model, the prediction of the behaviors is simpler than the available methods. Principal creep strain rate behaviors are very noteworthy for designing the fibrous composites in the creeping composites. Analysis of the mentioned parameter behavior in the reinforced materials is necessary to analyze failure, fracture, and fatigue studies in the creep of the short fiber composites. Shuttles, spaceships, turbine blades and discs, and nozzle guide vanes are commonly subjected to the creep effects. Also, predicting the creep behavior is significant to design the optoelectronic and photonic advanced composites with optical fibers. As a result, the uniform behavior with constant gradient is seen in the principal creep strain rate behavior, and also creep rupture may happen at the fiber end. Finally, good agreements are found through comparing the obtained analytical and FEM results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3, 72–9 (1952)

    Article  Google Scholar 

  2. Min, B.K., Crossman, F.W.: Analysis of creep for metal matrix composites. J. Compos. Mater. 16(3), 188–203 (1982)

    Article  Google Scholar 

  3. Lauke, B., Schultrich, B.: Deformation behaviour of short-fibre reinforced materials with debonding interfaces. Compos. Sci. Technol. 19(2), 111–126 (1983)

    Google Scholar 

  4. Lee, Y.S., Batt, T.J., Liaw, P.K.: Stress analysis of a composite material with short elastic fibre in power law creep matrix. Int. J. Mech. Sci. 32(10), 801–815 (1990)

    Article  Google Scholar 

  5. Beyerlein, I.J., Landis, C.M.: Shear-lag model for failure simulations of unidirectional fiber composites including matrix stiffness. Mech. Mater. 31(5), 331–350 (1999)

    Article  Google Scholar 

  6. Zhang, J.: Modeling of the influence of fibers on creep of fiber reinforced cementitious composite. Compos. Sci. Technol. 63(13), 1877–1884 (2003)

    Article  Google Scholar 

  7. Afonso, J.C., Ranalli, G.: Elastic properties of three-phase composites: analytical model based on the modified shear-lag model and the method of cells. Compos. Sci. Technol. 65(7–8), 1264–1275 (2005)

    Article  Google Scholar 

  8. Ramezani, M., Hamed, E.: Coupled thermo-mechanical creep behavior of sandwich beams – modeling and analysis. Eur. J. Mech. A. Solid. 42, 266–27 (2013)

    Article  Google Scholar 

  9. Shahidi, M., Pichler, B., Hellmich, C.: Viscous interfaces as source for material creep: a continuum micromechanics approach. Eur. J. Mech. A. Solid. 45, 41–58 (2014)

    Article  Google Scholar 

  10. Ismar, H., Schröter, F., Streicher, F.: Inelastic behavior of metal-matrix composites reinforced with fibres of silicon carbide, alumina or carbon: a finite-element analysis. Compos. Sci. Technol. 60(11), 2129–2136 (2000)

    Article  Google Scholar 

  11. Povirk, G.L., Needleman, A., Nutt, S.R.: An analysis of residual stress formation in whisker-reinforced Al/SiC composites. Mater. Sci. Eng. A 125(2), 129–140 (1990)

    Article  Google Scholar 

  12. Levy, A., Papazian, J.M.: Elastoplastic finite element analysis of short-fiber-reinforced SiC/Al composites: effects of thermal treatment. Acta Metall. Mater. 39(10), 2255–2266 (1991)

    Article  Google Scholar 

  13. Kim, K.J., Yu, W.R., Kim, M.S.: Anisotropic creep modeling of coated textile membrane using finite element analysis. Compos. Sci. Technol. 68(7–8), 1688–1696 (2008)

    Article  Google Scholar 

  14. Lee, W.J., Son, J.H., Park, I.M., Park, Y.H.: Direct numerical predictions for the steady-state creep deformation of extruded SiCw/Al6061 composites using a representative volume element with random arrangement of whiskers. Comput. Mater. Sci. 48(4), 802–812 (2010)

    Article  Google Scholar 

  15. Meng, Q., Wang, Z.: Extended finite element method for power-law creep crack growth. Eng. Fract. Mech. 127, 148–160 (2014)

    Article  Google Scholar 

  16. Monfared, V., Daneshmand, S., Monfared, A.H.: Effect of atomic number and atomic weight on time-dependent inelastic deformation in metals. Kovove Mater. 53(2), 85–89 (2015)

    Google Scholar 

  17. Morimoto, T., Yamaoka, T., Lilholt, H., Taya, M.: Second stage creep of silicon carbide whisker/6061 aluminum composite at 573 K. J. Eng. Mater. Technol. 110, 70–76 (1988)

    Article  Google Scholar 

  18. Meyer, D.W., Cooper, R.F., Plesha, M.E.: High-temperature creep and the interfacial mechanical response of a ceramic matrix composite. Acta Metall. Mater. 41(11), 3157–3170 (1993)

    Article  Google Scholar 

  19. Boubakri, A., Haddar, N., Elleuch, K., Bienvenu, Y.: Influence of thermal aging on tensile and creep behavior of thermoplastic polyurethane. C. R. Méc. 339(10), 666–673 (2011)

    Article  Google Scholar 

  20. Yang, X., Sun, Y., Shi, D.: Experimental investigation and modeling of the creep behavior of ceramic fiber-reinforced aerogel. J. Non-Cryst. Solids 358(3), 519–524 (2012)

    Article  Google Scholar 

  21. Wang, X., Shi, J., Liu, J., Yang, L., Zhishen, W.: Creep behavior of basalt fiber reinforced polymer tendons for prestressing application. Mater. Des. 59, 558–564 (2014)

    Article  Google Scholar 

  22. Guo, X., Lu, W., Wang, L., Qin, J.: A research on the creep properties of titanium matrix composites rolled with different deformation degrees. Mater. Des. 63, 50–55 (2014)

    Article  Google Scholar 

  23. Naeem, M.: Implications of day temperature variation for an aero-engine’s HP turbine-blade’s creep life-consumption. Aerosp. Sci. Technol. 13(1), 27–35 (2009)

    Article  Google Scholar 

  24. Schjødt-Thomsen, J., Pyrz, R.: Non-linear creep modelling of single-fibre model composites. Compos. Sci. Technol. 60(9), 1791–1800 (2000)

    Article  Google Scholar 

  25. Kumar, S., Singh, R.N.: The creep response of uni-directional fiber-reinforced ceramic composites: a theoretical study. Compos. Sci. Technol. 61(4), 461–473 (2001)

    Article  Google Scholar 

  26. Ohno, N., Ando, T., Miyake, T., Biwa, S.: A variational method for unidirectional fiber-reinforced composites with matrix creep. Int. J. Solids Struct. 39(1), 159–174 (2002)

    Article  Google Scholar 

  27. Mileiko, S.T.: Steady state creep of a composite with short fibres. J. Mater. Sci. 5, 254–261 (1970)

    Article  Google Scholar 

  28. Fukuda, H., Chou, T.W.: An advanced shear-lag model applicable to discontinuous fiber composites. J. Compos. Mater. 1(15), 79–91 (1981)

    Article  Google Scholar 

  29. McLean, M.: Creep deformation of metal matrix composites. Compos. Sci. Technol. 23, 37–52 (1985)

    Article  Google Scholar 

  30. Gao, X.L., Li, K.: A shear-lag for carbon nanotube-reinforced polymer composites. Int. J. Solids Struct. 42, 1649–1667 (2005)

    Article  Google Scholar 

  31. Hsueh, C.H., Young, R.J., Yang, X., Becher, P.F.: Stress transfer in a model composite containing a single embedded fiber. Acta Mater. 45(4), 1469–1476 (1997)

    Article  Google Scholar 

  32. Nayfeh, A.H., Abdelrahman, W.G.: Micromechanical modeling of load transfer in fibrous composites. Mech. Mater. 30, 307–324 (1998)

    Article  Google Scholar 

  33. Monfared, V., Daneshmand, S., Reddy, J.N.: Rate dependent plastic deformation analysis of short fiber composites employing virtual fiber method. J. Comput. Sci. 10, 26–35 (2015)

    Article  Google Scholar 

  34. Ruggles-Wrenn, M.B., Pope, M.T.: Creep behavior in interlaminar shear of a SiC/SiC ceramic composite with a self-healing matrix. Appl. Compos. Mater. 21(1), 213–225 (2014)

    Article  Google Scholar 

  35. Sayyidmousavi, A., Bougherara, H., Fawaz, Z.: The role of viscoelasticity on the fatigue of angle-ply polymer matrix composites at high and room temperatures- a micromechanical approach. Appl. Compos. Mater. 22(3), 307–321 (2015)

    Article  Google Scholar 

  36. Boyle, J.T., Spence, J.: Stress analysis for creep, 1st edn. Butterworth-Heinemann, Southampton, Butterworth (1983)

    Google Scholar 

  37. Khan, A.S., Huang, S.: Continuum theory of plasticity. John Wiley & Sons, New York (1995)

    Google Scholar 

  38. Sadd, M.H.: Elasticity: theory, applications, and numerics, 2nd edn. Academic, New York (2009)

    Google Scholar 

  39. Reddy, J.N.: An introduction to continuum mechanics, 2nd edn. Cambridge University Press, New York (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Monfared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monfared, V. Circular Functions Based Comprehensive Analysis of Plastic Creep Deformations in the Fiber Reinforced Composites. Appl Compos Mater 23, 1137–1149 (2016). https://doi.org/10.1007/s10443-016-9504-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-016-9504-5

Keywords

Navigation