Skip to main content
Log in

Micromechanical Modeling of Impact Damage Mechanisms in Unidirectional Composite Laminates

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Composite laminates are susceptible to the transverse impact loads resulting in significant damage such as matrix cracking, fiber breakage and delamination. In this paper, a micromechanical model is developed to predict the impact damage of composite laminates based on microstructure and various failure models of laminates. The fiber and matrix are represented by the isotropic and elastic-plastic solid, and their impact failure behaviors are modeled based on shear damage model. The delaminaton failure is modeling by the interface element controlled by cohesive damage model. Impact damage mechanisms of laminate are analyzed by using the micromechanical model proposed. In addition, the effects of impact energy and laminated type on impact damage behavior of laminates are investigated. Due to the damage of the surrounding matrix near the impact point caused by the fiber deformation, the surface damage area of laminate is larger than the area of ​​impact projectile. The shape of the damage area is roughly rectangle or elliptical with the major axis extending parallel to the fiber direction in the surface layer of laminate. The alternating laminated type with two fiber directions is more propitious to improve the impact resistance of laminates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Richardson M.O.W., Wisheart M.J.: Review of low velocity impact properties of composite materials. Compos. Pt. A. 27, 1123–1131 (1996)

    Article  Google Scholar 

  2. Elder D.J., Thomson R.S., Nguyen M.Q., Scott M.L.: Review of delamination predictive methods for low speed impact of composite laminates. Compos. Struct. 66, 677–683 (2004)

    Article  Google Scholar 

  3. Agrawal S., Singh K.K., Sarkar P.K.: Impact damage on fibre-reinforced polymer matrix composite-a review. J. Compos. Mater. 48, 317–332 (2014)

    Article  Google Scholar 

  4. Caprino G., Lopresto V., Scarponi C., Briotti G.: Influence of material thickness on the response of carbon-fabric/epoxy panels to low velocity impact. Compos. Sci. Technol. 59, 2279–2286 (1999)

    Article  Google Scholar 

  5. Aslan Z., Karakuzu R., Okutan B.: The response of laminated composite plates under low-velocity impact loading. Compos. Struct. 59, 119–127 (2003)

    Article  Google Scholar 

  6. Aktaş M., Atas C., İçten B.M., Karakuzu R.: An experimental investigation of the impact response of composite laminates. Compos. Struct. 87, 307–313 (2009)

    Article  Google Scholar 

  7. Karakuzu R., Erbil E., Aktas M.: Impact characterization of glass/epoxy composite plates: an experimental and numerical study. Compos. Pt. B. 41, 388–395 (2010)

    Article  Google Scholar 

  8. Sayer M., Bektas N.B., Sayman O.: An experimental investigation on the impact behavior of hybrid composite plates. Compos. Struct. 92, 1256–1262 (2010)

    Article  Google Scholar 

  9. Pérez-Martín M.J., Enfedaque A., Dickson W., Gálvez F.: Impact behavior of hybrid glass/carbon epoxy composites. J. Appl. Mech. 80, 031803 (2013)

    Article  Google Scholar 

  10. Choi H.Y., Chang F.K.: A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact. J. Compos. Mater. 26, 2134–2169 (1992)

    Article  Google Scholar 

  11. Collombet F., Lalbin X., Lataillade J.L.: Impact behavior of laminated composites: physical basis for finite element analysis. Compos. Sci. Technol. 58, 463–478 (1998)

    Article  Google Scholar 

  12. Luo R.K., Green E.R., Morrison C.J.: Impact damage analysis of composite plates. Int. J. Impact Eng. 22, 435–447 (1999)

    Article  Google Scholar 

  13. Hou J.P., Petrinic N., Ruiz C., Hallett S.R.: Prediction of impact damage in composite plates. Compos. Sci. Technol. 60, 273–281 (2000)

    Article  Google Scholar 

  14. Naik N.K., Sekher Y.C., Meduri S.: Damage in woven-fabric composites subjected to low-velocity impact. Compos. Sci. Technol. 60, 731–744 (2000)

    Article  Google Scholar 

  15. Johnson A.F., Pickett A.K., Rozycki P.: Computational methods for predicting impact damage in composite structures. Compos. Sci. Technol. 61, 2183–2192 (2001)

    Article  Google Scholar 

  16. De Moura M.F.S.F., Marques A.T.: Prediction of low velocity impact damage in carbon-epoxy laminates. Compos. Pt. A. 33, 361–368 (2002)

    Article  Google Scholar 

  17. Li C.F., Hu N., Yin Y.J., Sekine H., Fukunaga H.: Low-velocity impact-induced damage of continuous fiber-reinforced composite laminates. Part I. An FEM numerical model. Compos. Pt. A. 33, 1055–1062 (2002)

    Google Scholar 

  18. Iannucci L., Willows M.L.: An energy based damage mechanics approach to modelling impact onto woven composite materials-part I: numerical models. Compos. Pt. A. 37, 2041–2056 (2006)

    Article  Google Scholar 

  19. Meng Q.H., Wang Z.Q.: Modeling analysis of fiber hybridization in hybrid glass/carbon composites under high-velocity impact. Polym. Compos. (2015). doi:10.1002/pc.23844

    Google Scholar 

  20. Meng Q.H., Wang Z.Q.: Prediction of interfacial strength and failure mechanisms in particle-reinforced metal-matrix composites based on a micromechanical model. Eng. Fract. Mech. 142, 170–183 (2015)

    Article  Google Scholar 

  21. González C., LLorca J.: Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: microscopic mechanisms and modeling. Compos. Sci. Technol. 67, 2795–2806 (2007)

    Article  Google Scholar 

  22. Angelidis N., Irving P.E.: Detection of impact damage in CFRP laminates by means of electrical potential techniques. Compos. Sci. Technol. 67, 594–604 (2007)

    Article  Google Scholar 

  23. Sultan M.T.H., Worden K., Staszewski W.J., Hodzic A.: Impact damage characterisation of composite laminates using a statistical approach. Compos. Sci. Technol. 72, 1108–1120 (2012)

    Article  Google Scholar 

  24. Fiedler B., Hojo M., Ochiai S., Schulte K., Ando M.: Failure behavior of an epoxy matrix under different kinds of static loading. Compos. Sci. Technol. 61, 1615–1624 (2001)

    Article  Google Scholar 

  25. Wells J.K., Beaumont P.W.R.: Debonding and pull-out processes in fibrous composites. J. Mater. Sci. 20, 1275–1284 (1985)

    Article  Google Scholar 

  26. Wulf J., Schmauder S., Fischmeister H.F.: Finite element modeling of crack propagation in ductile fracture. Comput. Mater. Sci. 1, 297–301 (1993)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos.11472086, 11272096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Q., Wang, Z. Micromechanical Modeling of Impact Damage Mechanisms in Unidirectional Composite Laminates. Appl Compos Mater 23, 1099–1116 (2016). https://doi.org/10.1007/s10443-016-9502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-016-9502-7

Keywords

Navigation