Skip to main content
Log in

Simulation of High Velocity Impact on Composite Structures - Model Implementation and Validation

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

High velocity impact on composite aircraft structures leads to the formation of flexural waves that can cause severe damage to the structure. Damage and failure can occur within the plies and/or in the resin rich interface layers between adjacent plies. In the present paper a modelling methodology is documented that captures intra- and inter-laminar damage and their interrelations by use of shell element layers representing sub-laminates that are connected with cohesive interface layers to simulate delamination. This approach allows the simulation of large structures while still capturing the governing damage mechanisms and their interactions. The paper describes numerical algorithms for the implementation of a Ladevèze continuum damage model for the ply and methods to derive input parameters for the cohesive zone model. By comparison with experimental results from gas gun impact tests the potential and limitations of the modelling approach are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. MAAXIMUS More Affordable Aircraft through EXtended, Integrated and Mature NUmerical Sizing, EU Aeronautics Research Project, FP7-213371, 2008-2013.

  2. Olsson R.: Mass criterion for wave controlled impact response of composite plates. Compos. A: Appl. Sci. Manuf. 31(8), 879–887 (2000)

    Article  Google Scholar 

  3. Ladevèze P., LeDantec E.: Damage modelling of the elementary ply for laminated composites. Compos. Sci. Technol. 43(3), 257–267 (1992)

    Article  Google Scholar 

  4. Allix O., Ladeveze P.: Interlaminar interface modelling for the prediction of delamination. Compos. Struct. 22(4), 235–242 (1992)

    Article  Google Scholar 

  5. Johnson A.F., Pickett A.K., Rozycki P.: Computational methods for predicting impact damage in composite structures. Compos. Sci. Technol. 61(15), 2183–2192 (2001)

    Article  Google Scholar 

  6. Pickett A.K., Fouinneteau M.R.C., Middendorf P.: Test and modelling of impact on pre-loaded composite panels. Appl. Compos. Mater. 16(4), 225–244 (2009)

    Article  Google Scholar 

  7. Heimbs S., Bergmann T., Schueler D., Toso-Pentecôte N.: High velocity impact on preloaded composite plates. Compos. Struct. 111, 158–168 (2014)

    Article  Google Scholar 

  8. Turon A., Davila C.G., Camanho P.P., Costa J.: An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74(10), 1665–1682 (2007)

    Article  Google Scholar 

  9. Chadwick A., Evans R., Findlay D., Rickett B., Spriggs J.: Airport Runway Debris Detection Study Report no: 72/01/R/146/U. Technical report, Roke Manor Research Limited (2001)

    Google Scholar 

  10. Wu D., Salerno A., Malter U., Aoki R., Kochendörfer R., Kächele P.K., et al.: Inspection of aircraft structural components using lockin-thermography. Quantitative Infrared Thermography, QIRT. 96, 251–256 (1996)

    Google Scholar 

  11. Imielińska K., Castaings M., Wojtyra R., Haras J., Le Clezio E., Hosten B.: Air-coupled ultrasonic C-scan technique in impact response testing of carbon fibre and hybrid: glass, carbon and Kevlar/epoxy composites. J. Mater. Process. Technol. 157, 513–522 (2004)

    Article  Google Scholar 

  12. Liu D.: Impact-induced delamination—a view of bending stiffness mismatching. J. Compos. Mater. 22(7), 674–692 (1988)

    Article  Google Scholar 

  13. Guynn, E. G., and O’Brien, T. K. (1985). The influence of lay-up and thickness on composite impact damage and compression strength. In Proc 26th AIAA/ASME/ASCE/AHS/ASC Structures, Structural dynamics and Materials Conf, Orlando, FL (pp. 15–17).

  14. Kachanov, L. (2013). Introduction to continuum damage mechanics (Vol. 10). Springer Science & Business Media.

  15. Nezhad H.Y., Merwick F., Frizzell R.M., McCarthy C.T.: Numerical analysis of low-velocity rigid-body impact response of composite panels. International Journal of Crashworthiness. 20(1), 27–43 (2015)

    Article  Google Scholar 

  16. McCarthy M.A., Xiao J.R., Petrinic N., Kamoulakos A., Melito V.: Modelling bird impacts on an aircraft wing–part 1: material modelling of the fibre metal laminate leading edge material with continuum damage mechanics. International Journal of Crashworthiness. 10(1), 41–49 (2005)

    Article  Google Scholar 

  17. Mishnaevsky L., Dong M., Hoenle S., Schmauder S.: Computational mesomechanics of particle-reinforced composites. Comput. Mater. Sci. 16(1), 133–143 (1999)

    Article  Google Scholar 

  18. Belytschko T., Liu W.K., Moran B.: Nonlinear Finite Elements for Continua and Structures, 1 edn. Wiley, Chichester (2000)

    Google Scholar 

  19. Mi Y., Crisfield M.A., Davies G.A.O., Hellweg H.B.: Progressive delamination using interface elements. J. Compos. Mater. 32(14), 1246–1272 (1998)

    Article  Google Scholar 

  20. Cui W., Wisnom M.R.: A combined stress-based and fracture-mechanics-based model for predicting delamination in composites. Composites. 24(6), 467–474 (1993)

    Article  Google Scholar 

  21. Turon A., Camanho P.P., Costa J., Dávila C.G.: An interface damage model for the simulation of delamination under variable-mode ratio in composite materials. NASA/Technical Memorandum. 213277, (2004)

  22. Reeder J.R.: An evaluation of mixed-mode delamination failure criteria. NASA/Technical Memorandum. 104210, (1992)

  23. Wu, E. M., and Reuter Jr, R. C. (1965). Crack extension in fiberglass reinforced plastics (vol. 275). Illinois Univ. Dept. of Theoretical and Applied Mechanics.

  24. Allix O., Lévêque D., Perret L.: Identification and forecast of delamination in composite laminates by an interlaminar interface model. Compos. Sci. Technol. 58(5), 671–678 (1998)

    Article  Google Scholar 

  25. Choi H.Y., Chang F.-K.: A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact. J. Compos. Mater. 26(14), 2134–2169 (1992)

    Article  Google Scholar 

  26. Geubelle P.H., Baylor J.S.: Impact-induced delamination of composites: a 2D simulation. Compos. Part B. 29(5), 589–602 (1998)

    Article  Google Scholar 

  27. Ladevèze P., Lubineau G.: An enhanced mesomodel for laminates based on micromechanics. Compos. Sci. Technol. 62(4), 533–541 (2002)

    Article  Google Scholar 

  28. Zou Z., Reid S.R., Li S., Soden P.D.: Modelling interlaminar and intralaminar damage in filament-wound pipes under quasi-static indentation. J. Compos. Mater. 36(4), 477–499 (2002)

    Article  Google Scholar 

  29. Camanho P.P., Davila C.G., De Moura M.F.: Numerical simulation of mixed-mode progressive delamination in composite materials. J. Compos. Mater. 37(16), 1415–1438 (2003)

    Article  Google Scholar 

  30. Hallett, S. R. and Harper, P. W. (2015). Modelling delamination with cohesive interface elements. In Numerical modelling of failure in advanced composite materials (pp. 55–72). Elsevier.

  31. Borg R., Nilsson L., Simonsson K.: Simulation of delamination in fiber composites with a discrete cohesive failure model. Compos. Sci. Technol. 61(5), 667–677 (2001)

    Article  Google Scholar 

  32. Heimbs S., Heller S., Middendorf P., Hähnel F., Weiße J.: Low velocity impact on CFRP plates with compressive preload: test and modelling. International Journal of Impact Engineering. 36(10), 1182–1193 (2009)

    Article  Google Scholar 

  33. Abaqus: Abaqus Analysis User’s Manual. Dassault Systèmes Simulia Corp, Providence (2010)

    Google Scholar 

  34. Chowdhury M.A., Nuruzzaman D.M., Roy B.K.: Experimental investigation of friction coefficient and wear rate of stainless steel 304 sliding against smooth and rough mild steel Counterfaces. Gazi University Journal of Science. 26(4), 597–609 (2013)

    Google Scholar 

  35. Schön J.: Coefficient of friction of composite delamination surfaces. Wear. 237(1), 77–89 (2000)

    Article  Google Scholar 

  36. Williams K.V., Vaziri R., Poursartip A.: A physically based continuum damage mechanics model for thin laminated composite structures. Int. J. Solids Struct. 40(9), 2267–2300 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

Part of the research leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007-2013 under grant agreement n°213371.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Schueler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schueler, D., Toso-Pentecôte, N. & Voggenreiter, H. Simulation of High Velocity Impact on Composite Structures - Model Implementation and Validation. Appl Compos Mater 23, 857–878 (2016). https://doi.org/10.1007/s10443-016-9489-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-016-9489-0

Keywords

Navigation