Skip to main content
Log in

Material and Geometric Nonlinear Analysis of Functionally Graded Plate-Shell Type Structures

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

A nonlinear formulation for general Functionally Graded Material plate-shell type structures is presented. The formulation accounts for geometric and material nonlinear behaviour of these structures. Using the Newton–Raphson incremental-iterative method, the incremental equilibrium path is obtained, and in case of snap-through occurrence the automatic arc-length method is used. This simple and fast element model is a non-conforming triangular flat plate/shell element with 24 degrees of freedom for the generalized displacements. It is benchmarked in the solution of some illustrative plate- shell examples and the results are presented and discussed with numerical alternative models. Benchmark tests with material and geometrically nonlinear behaviour are also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Koizumi, M.: The concept of FGM Ceramics. Trans. Funct. Grad. Mater. 34, 3–10 (1993)

    Google Scholar 

  2. Reddy, J.N., Chin, C.D.: Thermomechanical analysis of functionally cylinders and plates. J. Therm. Stress. 21, 593–626 (1998)

    Article  Google Scholar 

  3. Praveen, G.N., Reddy, J.N.: Nonlinear transient thermoelastic analysis of functionally graded ceramic–metal plates. Int. J. Solids Struct. 35, 4457–4476 (1998)

    Article  Google Scholar 

  4. Reddy, J.N.: Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 58, 2177–2200 (2000)

    Google Scholar 

  5. Woo, J., Meguid, S.A.: Nonlinear analysis of functionally graded plates and shallow shells. Int. J. Solids Struct. 38, 7409–7421 (2001)

    Article  Google Scholar 

  6. Yang, J., Shen, H.S.: Nonlinear bending analysis of shear deformable functionally graded plates subjected to thermomechanical loads under various boundary conditions. Compos. Part B: Eng. 34, 103–115 (2003)

    Article  Google Scholar 

  7. Yang, J., Shen, H.S.: Nonlinear analysis of functionally graded plates under transverse and in-plane loads. Int. J. Nonlinear Mech. 38, 467–482 (2003)

    Article  Google Scholar 

  8. Ma, L.S., Wang, T.J.: Nonlinear bending and postbuckling of functionally graded circular plates under mechanical and thermal loadings. Int. J. Nonlin. Mech. 40, 3311–3330 (2003)

    Google Scholar 

  9. Na, K.S., Kim, J.H.: Nonlinear bending response of functionally graded plates under thermal loads. J. Therm. Stress. 29, 245–261 (2005)

    Article  Google Scholar 

  10. Reddy, J.N., Arciniega, R.A.: Mechanical and thermal buckling of functionally graded ceramic–metal plates. In: Analysis and Design of Plated Structures: Stability. Woodhead Publishing, Cambridge, UK (2006)

  11. Reddy, J.N., Arciniega, R.A.: Free vibration analysis of functionally graded plates. In: Analysis and Design of Plated Structures: Dynamics. Woodhead Publishing, Cambridge, UK (2006)

  12. Arciniega, R.A., Reddy, J.N.: Large deformation analysis of functionally graded shells. Int. J. Solids Struct. 44, 2036–2052 (2007)

    Article  Google Scholar 

  13. Kim, K.D., Lomboy, G.R., Han, S.C.: Geometrically nonlinear analysis of functionally graded material (FGM) plates and shells using a four-node quasi-conforming shell element. J. Compos. Mater. 42(5), 485–511 (2008)

    Google Scholar 

  14. Barbosa, A.T., Ferreira, A.J.M.: Geometrically nonlinear analysis of functionally graded plates and shells. Mech. Adv. Mater. Struct. 17, 40–48 (2010)

    Article  Google Scholar 

  15. Tamura, I., Tomota, Y., Ozawa, H.: Strength and ductility of Fe–Ni–C alloys composed of austenite and martensite with various strength. Proceedings of the Third International Conference on Strength of Metals and Alloys, vol. 1, Cambridge: Institute of Metals, 611–5 (1973)

  16. Nakamura, T., Wang, T., Sampath, S.: Determination of properties of graded materials by inverse analysis and instrumented indentation. Acta Mater. 48, 4293–4306 (2000)

    Article  Google Scholar 

  17. Gu, Y., Nakamura, T., Prchlik, L., Sampath, S., Wallace, J.: Micro-indentation and inverse analysis to characterize elastic–plastic graded materials. Mater. Sci. Eng. A 345, 223–233 (2003)

    Article  Google Scholar 

  18. Jin, J.H., Paulino, G.H., Dodds Jr., R.H.: Cohesive fracture modeling of elastic–plastic crack growth in functionally graded materials. Eng. Fract. Mech. 70(14), 1885–1912 (2003)

    Article  Google Scholar 

  19. Swaminathan, K., Naveenkumar, D.T., Zenkour, A.M., Carrera, E.: Stress, vibration and buckling analyses of FGM plates: a state-of-the-art review. Compos. Struct. 120, 10–31 (2015)

    Article  Google Scholar 

  20. Bao, G., Wang, L.: Multiple cracking in functionally graded ceramic/metal coatings. Int. J. Solids Struct. 32, 2853–2871 (1995)

    Article  Google Scholar 

  21. Delale, F., Erdogan, F.: The crack problem for a nonhomogeneous plane. ASME J. Appl. Mech. 50, 609–614 (1983)

    Article  Google Scholar 

  22. Chung, Y.L., Chi, S.H.: The residual stress of functionally graded materials. J. Chin. Inst. Civil Hydraul. Eng. 13, 1–9 (2001)

    Google Scholar 

  23. Chi, S.H., Chung, Y.L.: Cracking in Sigmoid functionally graded coating. J. Mech. 18, 41–53 (2002)

    Google Scholar 

  24. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells, 2nd edn. CRC Press, Boca Raton (2004)

    Google Scholar 

  25. Moita, J.S., Barbosa, J.I., Mota Soares, C.M., Mota Soares, C.A.: Sensitivity analysis and optimal design of geometric nonlinear laminated plates and shells. Comput. Struct. 76, 407–420 (2000)

    Article  Google Scholar 

  26. Hinton, E., Owen, R.R.J.: Finite Element Software for Plates and Shells. Pineridge Press, Swansea (1984)

    Google Scholar 

  27. Zienkiewicz, O.C.: The Finite Element Method. McGraw-Hill, New York (1977)

    Google Scholar 

  28. Bathe, K.J.: Finite Element Procedures in Engineering Analysis. Prentice-Hall Inc, Englewood Cliffs (1982)

    Google Scholar 

  29. Bathe, K.J., Ho, L.W.: A simple and effective element for analysis of general shell structures. Comput. Struct. 13, 673–681 (1981)

    Article  Google Scholar 

  30. Moita, J.S., Araújo, A.L., Martins, P.G., Mota Soares, C.M., Mota Soares, C.A.: Analysis of active-passive plate structures using a simple and efficient finite element model. Mech. Adv. Mater. Struct. 18, 159–169 (2011)

    Article  Google Scholar 

  31. Moita, J.S., Mota Soares, C.M., Mota Soares, C.A.: Buckling behaviour of laminated composite structures using a discrete higher-order displacement model. Compos. Struct. 35, 75–92 (1996)

    Article  Google Scholar 

  32. Crisfield, M.A.: A fast incremental/iterative solution procedure that handles snap-through. Comput. Struct. 62, 13–55 (1980)

    Google Scholar 

  33. Supriyomo, M.H., Aliabadi, M.H.: Boundary element method for shear deformable plates with combined geometric and material nonlinearities. Eng. Anal. Boundary Elem. 30, 31–42 (2006)

    Article  Google Scholar 

  34. Waidemam, L.: Formulação do método dos elementos de contorno para placas enrigecidas considerando-se não-linearidades física e geométrica. Tese de Doutorado, Universidade de S. Paulo, Escola de Engenharia de S. Carlos (2008) - In Portuguese. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-10092008-102729/en.php

  35. ANSYS 14.0, Swanson Analysis Systems, Houston, USA (2011)

Download references

Acknowledgments

This work is dedicated in honor of Professor J.N. Reddy on his 70th birthday and for his contribution and impact to research and education on mechanics of advanced composite materials and structures. The authors also express their gratitude for his friendship and scientific advices.

This work was supported by FCT, Fundação para a Ciência e Tecnologia, Portugal, through IDMEC, under LAETA, project UID/EMS/50022/2013, and also CNPq, CAPES and FAPERJ, from Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Araújo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moita, J.S., Araújo, A.L., Mota Soares, C.M. et al. Material and Geometric Nonlinear Analysis of Functionally Graded Plate-Shell Type Structures. Appl Compos Mater 23, 537–554 (2016). https://doi.org/10.1007/s10443-016-9473-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-016-9473-8

Keywords

Navigation