Skip to main content
Log in

Micromechanical Modeling for Tensile Behaviour of Carbon Fiber − Reinforced Ceramic − Matrix Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The stress–strain curves of fiber − reinforced ceramic − matrix composites (CMCs) exhibit obvious non-linear behaviour under tensile loading. The occurrence of multiple damage mechanisms, i.e., matrix multicracking, fiber/matrix interface debonding and fibers fracture, is the mainly reason for the non-linear characteristic. The micromechanics approach has been developed to predict the tensile stress–strain curves of unidirectional, cross-ply and woven CMCs. The shear-lag model was used to describe the micro stress field of the damaged composite. The damage models were used to determine the evolution of micro damage parameters, i.e., matrix crack spacing, interface debonded length and broken fibers fraction. By combining the shear-lag model with damage models and considering the effect of transverse multicracking in the 90° plies or transverse yarns in cross-ply or woven CMCs, the tensile stress–strain curves of unidirectional, cross-ply, 2D and 2.5D woven CMCs have been predicted. The results agreed with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Naslain, R.: Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos. Sci. Technol. 64, 155–170 (2004). doi:10.1016/S0266-3538(03)00230-6

    Article  Google Scholar 

  2. Schmidt, S., Beyer, S., Knabe, H., Immich, H., Meistring, R., Gessler, A.: Advanced ceramic matrix composite materials for current and future propulsion system applications. Acta Astronaut. 55, 409–420 (2004). doi:10.1016/j.actaastro.2004.05.052

    Article  Google Scholar 

  3. DiCarlo, J.A., Van Roode, M.: Ceramic composite development for gas turbine hot section components. Proc ASME Turbo Expo: Power for Land, Sea and Air 2, 221–231 (2006)

    Google Scholar 

  4. Stephen, T.: General Electric primes CMC for turbine blades. Flight International, 2010. http://www.flightglobal.com/news/articles/general-electric-primes-cmc-for-turbine-blades-349834/

  5. Zhang, L.T., Cheng, L.F., Luan, X.G., Mei, H., Xu, Y.D.: Environmental performance testing system for thermostructure materials applied in aeroengines. Key Eng. Mater. 313, 183–190 (2006). doi:10.4028/www.scientific.net/KEM.313.183

    Article  Google Scholar 

  6. Li, L.B., Song, Y.D., Sun, Y.C.: Modeling the tensile behavior of unidirectional C/SiC ceramic-matrix composites. Mech. Compos. Mater. 49, 659–672 (2014)

    Article  Google Scholar 

  7. Li, L.B., Song, Y.D.: An approach to estimate interface shear stress of ceramic matrix composites from hysteresis loops. Appl. Compos. Mater. 17, 309–328 (2010). doi:10.1007/s10443-009-9122-6

    Article  Google Scholar 

  8. Curtin, W.A.: Stress–strain behavior of brittle matrix composites. Comprehensive composite materials. Elsevier Science Ltd 4, 47–76 (2000). doi:10.1016/B0-08-042993-9/00088-7

    Google Scholar 

  9. Li, L.B.: Effect of fiber Poisson contraction on matrix multicracking evolution of fiber-reinforced ceramic-matrix composites. Appl. Compos. Mater. (2014). doi:10.1007/s10443-014-9426-z

    Google Scholar 

  10. Li, L.B., Song, Y.D., Sun, Y.C.: Modeling loading/unloading hysteresis behavior of unidirectional C/SiC ceramic matrix composites. Appl. Compos. Mater. 20, 655–672 (2013). doi:10.1007/s10443-012-9294-3

    Article  Google Scholar 

  11. Budiansky, B., Hutchinson, J.W., Evans, A.G.: Matrix fracture in fiber-reinforced ceramics. J. Mech. Phys. Solids 34, 167–189 (1986)

    Article  Google Scholar 

  12. Daniel, I.M., Lee, J.W.: The behavior of ceramic matrix fiber composites under longitudinal loading. Compos. Sci. Technol. 46, 105–113 (1993). doi:10.1016/0266-3538(93)90166-E

    Article  Google Scholar 

  13. Aveston, J., Cooper, G.A., Kelly, A.: Single and multiple fracture. Properties of fiber composites: conference on proceedings. England: National Physical Laboratory, IPC. 15–26 (1971)

  14. Zok, F.W., Spearing, S.M.: Matrix crack spacing in brittle matrix composites. Acta Metall. Mater. 40, 2033–2043 (1992). doi:10.1016/0956-7151(92)90189-L

    Article  Google Scholar 

  15. Zhu, H., Weitsman, Y.: The progression of failure mechanisms in unidirectional reinforced ceramic composites. J. Mech. Phys. Solids 42, 1601–1632 (1994). doi:10.1016/0022-5096(94)90089-2

    Article  Google Scholar 

  16. Solti, J.P., Mall, S., Robertson, D.D.: Modeling damage in unidirectional ceramic-matrix composites. Compos. Sci. Technol. 54, 55–66 (1995). doi:10.1016/0266-3538(95)00041-0

    Article  Google Scholar 

  17. Curtin, W.A.: Multiple matrix cracking in brittle matrix composites. Acta Metall. Mater. 41, 1369–77 (1993). doi:10.1016/0956-7151(93)90246-O

    Article  Google Scholar 

  18. Hsueh, C.H.: Crack-wake interface debonding criterion for fiber-reinforced ceramic composites. Acta Mater. 44, 2211–2216 (1996). doi:10.1016/1359-6454(95)00369-X

    Article  Google Scholar 

  19. Gao, Y.C., Mai, Y., Cotterell, B.: Fracture of fiber-reinforced materials. J. Appl. Math. Phys. 39, 550–572 (1988). doi:10.1007/BF00948962

    Article  Google Scholar 

  20. Sun, Y.J., Singh, R.N.: The generation of multiple matrix cracking and fiber-matrix interfacial debonding in a glass composite. Acta Mater. 46, 1657–1667 (1998). doi:10.1016/S1359-6454(97)00347-9

    Article  Google Scholar 

  21. Thouless, M.D., Evans, A.G.: Effects of pull-out on the mechanical properties of ceramic matrix composites. Acta Metall. Mater. 36, 517–522 (1988). doi:10.1016/0001-6160(88)90083-1

    Article  Google Scholar 

  22. Cao, H.C., Thouless, M.D.: Tensile tests of ceramic-matrix composites: theory and experiment. J. Am. Ceram. Soc. 73, 2091–2094 (1990). doi:10.1111/j.1151-2916.1990.tb05273.x

    Article  Google Scholar 

  23. Sutcu, M.: Weibull statistics applied to fiber failure in ceramic composites and work of fracture. Acta Metall. Mater. 37, 651–661 (1989). doi:10.1016/0001-6160(89)90249-6

    Article  Google Scholar 

  24. Schwietert, H.R., Steif, P.S.: A theory for the ultimate strength of a brittle-matrix composite. J. Mech. Phys. Solids. 38, 325–343 (1990). doi:10.1016/0022-5096(90)90002-L

    Article  Google Scholar 

  25. Curtin, W.A.: Theory of mechanical properties of ceramic-matrix composites. J. Am. Ceram. Soc. 74, 2837–2845 (1991). doi:10.1111/j.1151-2916.1991.tb06852.x

    Article  Google Scholar 

  26. Weitsman, Y., Zhu, H.: Multiple-fracture of ceramic composites. J. Mech. Phys. Solids. 41, 351–388 (1993). doi:10.1016/0022-5096(93)90012-5

    Article  Google Scholar 

  27. Hild, F., Domergue, J.M., Leckie, F.A., Evans, A.G.: Tensile and flexural ultimate strength of fiber-reinforced ceramic-matrix composites. Int. J. Solids. Strut. 31, 1035–1045 (1994). doi:10.1016/0020-7683(94)90010-8

    Article  Google Scholar 

  28. Curtin, W.A., Ahn, B.K., Takeda, N.: Modeling brittle and tough stress–strain behavior in unidirectional ceramic matrix composites. Acta Mater. 46, 3409–3420 (1998). doi:10.1016/S1359-6454(98)00041-X

    Article  Google Scholar 

  29. Paar, R., Valles, J.-L., Danzer, R.: Influence of fiber properties on the mechanical behavior of unidirectionally-reinforced ceramic matrix composites. Mater. Sci. Eng. A 250, 209–216 (1998). doi:10.1016/S0921-5093(98)00593-0

    Article  Google Scholar 

  30. Liao, K., Reifsnider, K.L.: A tensile strength model for unidirectional fiber-reinforced brittle matrix composite. Int. J. Fracture. 106, 95–115 (2000). doi:10.1023/A:1007645817753

    Article  Google Scholar 

  31. Zhou, S.J., Curtin, W.A.: Failure of fiber composites: a lattice green function model. Acta Metall. Mater. 43, 3093–3104 (1995). doi:10.1016/0956-7151(95)00003-E

    Article  Google Scholar 

  32. Dutton, R.E., Pagano, N.J., Kim, R.Y.: Modeling the ultimate tensile strength of unidirectional glass-matrix composites. J. Am. Ceram. Soc. 83, 166–174 (2000). doi:10.1111/j.1151-2916.2000.tb01166.x

    Article  Google Scholar 

  33. Xia, Z., Curtin, W.A.: Toughness-to-brittle transitions in ceramic-matrix composites with increasing interfacial shear stress. Acta Mater. 48, 4879–4892 (2000). doi:10.1016/S1359-6454(00)00291-3

    Article  Google Scholar 

  34. Laws, N., Dvorak, G.J.: Progressive transverse cracking in composite laminates. J. Compos. Mater. 22, 900–916 (1988). doi:10.1177/002199839002401108

    Article  Google Scholar 

  35. Pryce, A.W., Smith, P.A.: Matrix cracking in unidirectional ceramic matrix composites under quasi-static and cyclic loading. Acta Metall. Mater. 41, 1269–1281 (1993). doi:10.1016/0956-7151(93)90178-U

    Article  Google Scholar 

  36. Beyerle, D.S., Spearing, S.M., Zok, F.W., Evans, A.G.: Damage and failure in unidirectional ceramic matrix composites. J. Am. Ceram. Soc. 75, 2719–25 (1992). doi:10.1111/j.1151-2916.1992.tb05495.x

    Article  Google Scholar 

  37. Sørensen, B.F., Holmes, J.W.: Effect of loading rate on the monotonic tensile behavior of a continuous-fiber-reinforced glass-ceramic matrix composite. J. Am. Ceram. Soc. 79, 313–320 (1996). doi:10.1111/j.1151-2916.1996.tb08122.x

    Article  Google Scholar 

  38. Beyerle, D.S., Spearing, S.M., Evans, A.G.: Damage mechanisms and mechanical properties of a laminated 0/90 ceramic/matrix composite. J. Am. Ceram. Soc. 75, 3321–3330 (1992). doi:10.1111/j.1151-2916.1992.tb04428.x

    Article  Google Scholar 

  39. Wang, S.W., Parvizi-Majidi, A.: Experimental characterization of the tensile behavior of Nicalon fiber-reinforced calcium aluminosilicate composites. J. Mater. Sci. 27, 5483–5496 (1992)

    Article  Google Scholar 

  40. Zawada, L.P., Butkus, L.M., Hartman, G.A.: Tensile and fatigue behavior of silicon carbide fiber-reinforced aluminosilicate glass. J. Am. Ceram. Soc. 74, 2851–2858 (1991). doi:10.1111/j.1151-2916.1991.tb06854.x

    Article  Google Scholar 

  41. Mei, H., Cheng, L.F., Zhang, L.T.: Damage evolution and microstructural characterization of a cross-woven C/SiC composite under tensile loading. J Chin. Ceramic Soc. 35, 137–143 (2007)

    Google Scholar 

  42. Wang, Y.Q., Zhang, L.T., Cheng, L.F.: Tensile performance and damage evolution of a 2.5D C/SiC composite characterized by acoustic emission. Appl. Compos. Mater. 15, 183–188 (2008). doi:10.1007/s10443-008-9066-2

    Article  Google Scholar 

  43. Wang, Y.Q., Zhang, L.T., Cheng, L.F., et al.: Characterization of tensile behavior of a two-dimensional woven carbon/silicon carbide composite fabricated by chemical vapor infiltration. Mater. Sci. Eng. A 497, 295–300 (2008). doi:10.1016/j.msea.2008.07.050

    Article  Google Scholar 

  44. Mei, H.: Measurement and calculation of thermal residual stress in fiber reinforced ceramic matrix composites. Compos. Sci. Technol. 68, 3285–92 (2008). doi:10.1016/j.compscitech.2008.08.015

    Article  Google Scholar 

  45. Morscher, G.N., Singh, M., Kiser, J.D., Freedman, M., Bhatt, R.: Modeling stress-dependent matrix cracking and stress–strain behavior in 2D woven SiC fiber reinforced CVI SiC matrix. Compos. Sci. Technol. 67, 1009–17 (2007). doi:10.1016/j.compscitech.2006.06.007

    Article  Google Scholar 

Download references

Acknowledgments

The work reported here is supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20140813).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Longbiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longbiao, L. Micromechanical Modeling for Tensile Behaviour of Carbon Fiber − Reinforced Ceramic − Matrix Composites. Appl Compos Mater 22, 773–790 (2015). https://doi.org/10.1007/s10443-014-9435-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-014-9435-y

Keywords

Navigation