Skip to main content
Log in

Experimental Tests on the Composite Foam Sandwich Pipes Subjected to Axial Load

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Compared to the composite thin-walled tube, the composite foam sandwich pipe has better local flexural rigidity, which can take full advantage of the high strength of composite materials. In this paper, a series of composite foam sandwich pipes with different parameters were designed and manufactured using the prefabricated polyurethane foam core-skin co-curing molding technique with E-glass fabric prepreg. The corresponding axial-load compressive tests were conducted to investigate the influence factors that experimentally determine the axial compressive performances of the tubes. In the tests, the detailed failure process and the corresponding load–displacement characteristics were obtained; the influence rules of the foam core density, surface layer thickness, fiber ply combination and end restraint on the failure modes and ultimate bearing capacity were studied. Results indicated that: (1) the fiber ply combination, surface layer thickness and end restraint have a great influence on the ultimate load bearing capacity; (2) a reasonable fiber ply combination and reliable interfacial adhesion not only optimize the strength but also transform the failure mode from brittle failure to ductile failure, which is vital to the fully utilization of the composite strength of these composite foam sandwich pipes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Yan, L.B., Chouw, N., Jayaraman, K.: Flax fibre and its composites–a review. Compos Part B 56, 296–317 (2014)

    Article  Google Scholar 

  2. Boria, S., Pettinari, S., Giannoni, F.: Theoretical analysis on the collapse mechanisms of thin-walled composite tubes”. Compos Struct 103, 43–49 (2013)

    Article  Google Scholar 

  3. Palanivelu, S., Paepegem, W.V., Degrieck, J., Vantomme, J., Kakogiannis, D., Ackeren, J.V., Hemelrijck, D.V., Wastiels, J.: Comparison of the crushing performance of hollow and foam-filled small-scale composite tubes with different geometrical shapes for use in sacrificial cladding structures. Compos Part B 41(6), 434–445 (2010)

    Article  Google Scholar 

  4. Tarlochan, F., Samer, F., Hamouda, A.M.S., et al.: Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces. Thin-Walled Struct 71, 7–17 (2013)

    Article  Google Scholar 

  5. Alia, R.A., Cantwell, W.J., Langdon, G.S., et al.: The energy-absorbing characteristics of composite tube-reinforced foam structures. Compos Part B 61, 127–135 (2014)

    Article  Google Scholar 

  6. Tarlochan, F., Ramesh, S., Harpreet, S.: Advanced composite sandwich structure design for energy absorption applications: Blast protection and crashworthiness. Compos Part B 43(5), 2198–2208 (2012)

    Article  Google Scholar 

  7. Palanivelu, S., Paepegem, W.V., Degrieck, J., Kakogiannis, D., Ackeren, J.V., Hemelrijck, D.V., Wastiels, J., Vantomme, J.: Comparative study of the quasi-static energy absorption of small-scale composite tubes with different geometrical shapes for use in sacrificial cladding structures. Polym Test 29(3), 381–396 (2010)

    Article  Google Scholar 

  8. Ochelski, S., Bogusz, P., Kiczko, A.: Static axial crush performance of unfilled and elastomer-filled composite tubes. Bull Pol Acad Tech 60(1), 37–43 (2012)

    Article  Google Scholar 

  9. Shariyat, M.: A general nonlinear global–local theory for bending and buckling analyses of imperfect cylindrical laminated and sandwich shells under thermo mechanical loads. Meccanica 47, 301–319 (2012)

    Article  Google Scholar 

  10. Shariyat, M.: An accurate double-superposition global–local theory for vibration and bending analyses of cylindrical. J Mech Eng 225, 1816–1832 (2011)

    Google Scholar 

  11. Shariyat, M.: Nonlinear thermomechanical dynamic buckling analysis of imperfect viscoelastic composite/sandwich shells by a double-superposition global–local theory and various constitutive models. Compos Struct 93(11), 2833–2843 (2011)

    Article  Google Scholar 

  12. L. Chen, Research on the strength and stability of FRP combined pole under axial compression [Ph. D. thesis], Bridge and tunnel engineering, China PLA University of Science and Technology, 2012.

  13. Walker, M., Smith, R.: A procedure to select the best material combinations and optimally design composite sandwich cylindrical shells for minimum mass. Mater Des 27(2), 160–165 (2006)

    Article  Google Scholar 

  14. Panahi, B., Ghavanloo, E., Daneshmand, F.: Transient response of a submerged cylindrical foam core sandwich panel subjected to shock loading. Mater Des 32(5), 2611–2620 (2011)

    Article  Google Scholar 

  15. Rahmani, O., Khalili, S.M.R., Malekzadeh, K.: Free vibration response of composite sandwich cylindrical shell with flexible core. Compos Struct 95, 1269–1281 (2010)

    Article  Google Scholar 

  16. Rahmani, O., Khalili, S.M.R., Thomsen, O.T.: A high-order theory for the analysis of circular cylindrical composite sandwich shells with transversely compliant core subjected to external loads. Compos Struct 94, 2129–2142 (2012)

    Article  Google Scholar 

  17. Ataollahi, S., Taher, S.T., Eshkoor, R.A., et al.: “Energy absorption and failure response of silk/epoxy composite tubes”. Compos Part B 43, 542–548 (2012)

    Article  Google Scholar 

  18. Yan, L.B., Chouw, N.: “Crashworthiness characteristics of flax fiber reinforced epoxy composite tubes.”. Compos Part B 55, 5–10 (2013)

    Article  Google Scholar 

  19. Seitzberger, M., Rammerstorfer, F.G., Gradinger, R., et al.: “Experimental studies on the quasi-static axial crushing of steel columns filled with aluminum foam”. Int J Solids Struct 37, 4125–4147 (2000)

    Article  Google Scholar 

  20. Santosa, S.P., Wierzbicki, T., Hanssen, A.G., et al.: “Experimental and numerical studies of foam-filled sections”. Int J Impact Eng 24, 509–534 (2000)

    Article  Google Scholar 

  21. Guden, M., Yuksel, S., Tasdemirci, S., Tanoglu, M.: “Effect of aluminum closed-cell foam filling on the quasi-static axial crush performance of glass fiber reinforced polyester composite and aluminum/composite hybrid tubes”. Compos Struct 81, 480–490 (2007)

    Article  Google Scholar 

  22. Yan, L.: Nawawi Chouw a, Krishnan Jayaraman, “Effect of triggering and polyurethane foam-filler on axial crushing of natural flax/epoxy composite tubes”. Mater Des 56, 528–541 (2014)

    Article  Google Scholar 

  23. Yan, L., Chouw, N., Jayaraman, K.: Lateral crushing of empty and polyurethane-foam filled natural flax fabric reinforced epoxy composite tubes”. Compos Part B 63, 15–26 (2014)

    Article  Google Scholar 

  24. Saha, M., Prabhakaran, R., Waters, W.A.: Compressive properties of pultruded composites”. Mech Compos Mater 36(6), 469–474 (2000)

    Article  Google Scholar 

  25. Othman, A., Abdullah, S., Ariffin, A.K., Mohamed, N.A.N.: “Investigating the Quasi-Static Axial Crushing Behavior of Polymeric Foam-Filled Composite Pultrusion Square Tubes”. Mater Des (2014). doi:10.1016/j.matdes.2014.06.020

    Google Scholar 

Download references

Acknowledgments

This paper is supported by the National Natural Science Foundation of China (No. 51408606) and the Major State Basic Research Development Program of China (973 Program) under Grant No. 2012CB026202. The authors wish to acknowledge their team members for their assistance in conducting the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QiLin Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Zhao, Q., Xu, K. et al. Experimental Tests on the Composite Foam Sandwich Pipes Subjected to Axial Load. Appl Compos Mater 22, 669–691 (2015). https://doi.org/10.1007/s10443-014-9430-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-014-9430-3

Keywords

Navigation