Skip to main content
Log in

Finite Element Analysis of the Competition Between Crack Deflection and Penetration of Fiber-Reinforced Composites Using Virtual Crack Closure Technique

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Crack deflection along the fiber/matrix interface for fiber-reinforced composites is an important condition upon which the toughening mechanisms depend. Sound control for the interface debonding of composites contributes to improving the fracture toughness of composites. Combined with the virtual crack closure technique, a finite element model of composites is proposed to predict the competition between the matrix crack deflection along the interface and the matrix crack penetration into the fibers under the thermomechanical coupling fields. For C/C composites, the effects of the geometry size, fiber volume fraction, fiber coating materials and thermal mismatch on the energy release rate and the crack deflection mechanisms are studied. Results show the fiber coating increases the ability to deflect at large thermal mismatch and small crack sizes, and the TaC coating shows larger effect than the SiC coating. The research provides fundamental method for promoting the toughening design of C/C composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Launey, M.E., Ritchie, R.O.: On the fracture toughness of advanced materials. Adv. Mater. 21, 1–8 (2009)

    Article  Google Scholar 

  2. Christensen, R.M.: Mechanics of composite materials. Wiley, New York (1979)

    Google Scholar 

  3. Ahn, B.K., Curtin, W.A., Parthasarathy, T.A., Dutton, R.E.: Criteria for crack deflection/penetration criteria for fiber-reinforced ceramic matrix composites. Compos. Sci. Technol. 58(11), 1775–1784 (1998)

    Article  Google Scholar 

  4. Kumar, S., Curtin, W.A.: Crack interaction with microstructure. Mater. Today 10(9), 34–44 (2007)

    Article  Google Scholar 

  5. He, M.Y., Hutchinson, J.W.: Crack deflection at an interface between dissimilar elastic materials. Inter. J. Solids Struct. 25(9), 1053–1067 (1989)

    Article  Google Scholar 

  6. Martin, E., Peters, P.W.M., Leguillon, D., Quenisset, J.M.: Conditions for matrix crack deflection at an interface in ceramic matrix composites. Mater. Sci. Eng., A 250(2), 291–302 (1998)

    Article  Google Scholar 

  7. Martin, E., Leguillon, D.: Energetic conditions for interfacial failure in the vicinity of a matrix crack in brittle matrix composites. Inter. J. Solids Struct. 41(24–25), 6937–6948 (2004)

    Article  Google Scholar 

  8. Kumar, S., Singh, R.N.: Effects of fiber coating properties on the crack deflection and penetration in fiber-reinforced ceramic composites. Acta Mater. 45(11), 4721–4731 (1997)

    Article  Google Scholar 

  9. Carrère, N., Martin, E., Lamon, J.: The influence of the interphase and associated interfaces on the deflection of matrix cracks in ceramic matrix composites. Compos. Part A 31(11), 1179–1190 (2000)

    Article  Google Scholar 

  10. Rybicki, E.F., Kanninen, M.F.: A finite element calculation of stress intensity factors by a modified crack closure integral. Eng. Fract. Mech. 9, 931–938 (1977)

    Article  Google Scholar 

  11. Irwin, G.R.: Fracture dynamics, fracturing of metals. Cleveland: Am. Soc. Met. 147–166 (1948)

  12. Krueger, R.: Virtual crack closure technique: history, approach, and applications. Appl. Mech. Rev. 57, 109–143 (2004)

    Article  Google Scholar 

  13. Zak, A.R., Williams, M.L.: Crack point stress singularities at a bimaterial interface. J. Appl. Mech. 30, 142–143 (1963)

    Article  Google Scholar 

  14. Dundurs, J.: Edge bonded dissimilar orthogonal elastic wedges under normal and shear loading. J. Appl. Mech. 36, 650–662 (1968)

    Article  Google Scholar 

  15. Li, Z., Xiao, P., Xiong, X., Yang, Y., Kuang, W.M.: Form mechanism of cracks in fabricated process of C/C-SiC frictional composites through warm compacted-in situ reacted process. J Cent. South Univ (Science and Technology) 39(3), 506–511 (2008). [In Chinese]

    Google Scholar 

  16. López-de-la-Torrea, L., Winkler, B., Schreuer, J., Knorr, K., Avalos-Borja, M.: Elastic properties of tantalum carbide (TaC). Solid State Commu. 134, 245–250 (2005)

    Article  Google Scholar 

  17. Liao, X.L., Li, H.J., Xu, W.F., Li, K.Z.: Study on the thermal expansion properties of C/C composites. J. Mater. Sci. 42, 3435–3439 (2007)

    Article  Google Scholar 

  18. Tsang, D.K.L., Marsden, B.J., Fok, S.L., Hall, G.: Graphite thermal expansion relationship for different temperature ranges. Carbon 43, 2902–2906 (2005)

    Article  Google Scholar 

  19. Xiong, X., Wang, Y.L., Chen, Z.K., Li, G.D.: Mechanical properties and fracture behaviors of C/C composites with PyC/TaC/PyC, PyC/SiC/TaC/PyC multi-interlayers. Solid State Sci. 11, 1386–1392 (2009)

    Article  Google Scholar 

  20. Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35(2), 379–386 (1968)

    Article  Google Scholar 

  21. Cai, D.Y., Li, D.C.: Eeffect of carbon fiber content on the mechanical properties of C/C composites. Carbon Tech. 1(1), 16–18 (2001). [In Chinese]

    Google Scholar 

  22. Zhao, J.G., Li, K.Z., Li, H.G.: Influence of fiber volume and heat treatment on the properties of C/C composites. Chinese J. Mater. Res. 19, 293–298 (2009) [In Chinese]

    Google Scholar 

  23. Liu, P.F., Wang, S.L., Tao, W.M., Guo, Y.M.: Finite element analysis of matrix crack deflection mechanisms in fiber-reinforced composites. Acta Mater. Compos Sinica 23(3), 146–152 (2006). [In Chinese]

    Google Scholar 

  24. Wang, Y.L., Xiong, X., Li, G.D., Xiao, P., Chen, Z.K.: Microstructure and mechanical performance of advanced C/C-Tac composites. Chinese J. Nonfer. Metal 18, 608–613 (2008) [In Chinese]

    Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Funding of China (No. 51375435), the Natural Science Funding of Zhejiang Province of China (No. LY13E050002) and the Specialized Fund for the Basic Research Operating expenses Program of Central Colleges (2013XZZX005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. F. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P.F., Yang, Y.H. Finite Element Analysis of the Competition Between Crack Deflection and Penetration of Fiber-Reinforced Composites Using Virtual Crack Closure Technique. Appl Compos Mater 21, 759–771 (2014). https://doi.org/10.1007/s10443-013-9375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-013-9375-y

Keywords

Navigation