Skip to main content
Log in

Comparison between the Classic Sensor Embedding Method and the Monitoring Patch Embedding Method for Composites Instrumentation

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this paper, the classic embedding technique, with bared sensors, and a recent proposal, the monitoring patch, are compared with the aim to improve the composites in-core instrumentation. The monitoring patch emerges with the need to industrialize sensors integration inside composite structures; thus, a complete evaluation of its mechanical performance has to be done. Numerical and experimental campaigns are carried out on elementary carbon-epoxy coupons to evaluate the benefits and disadvantages of this procedure compared with the typical interlayer sensor embedding. The results show that the use of monitoring patch does not affect significantly the mechanical performance of instrumented coupons. An instrumentation transfer function (ITF) is proposed to link the information that electronic devices can detect, the mechanical phenomena around these electronic devices and the measurements data acquired by global or local techniques (DIC, FEM, gauges). A good correlation between the strain data acquired and the strain values calculated by FEM confirms the approach of the ITF to evaluate the influence of the monitoring patch on the measured signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Baker, W., McKenzie, I., Jones, R.: Development of life extension strategies for Australian military aircrafts using structural health monitoring of composite repair joints. Compos. Struct. 66, 133–143 (2004)

    Article  Google Scholar 

  2. Baker,: Structural health monitoring of a bonded composite patch repair on a ratigue-cracked F-111C wing. Air Vehicles Division, Defence Science and Technology Organisation, DSTO-RR-0335, Australian Government (2008)

  3. Torres, M., Crouzeix, L., Collombet, F., Douchin, B., Grunevald, Y.-H.: Mechanical characterization of an alternative technique to embed sensors in composite structures: the monitoring patch. Appl. Compos. Mater. 19, 379–391 (2012)

    Article  Google Scholar 

  4. Luyckx, G., Voet, E., Geernaert, T., Chah, K., et al.: Response of FBGs in microstructured and bow tie fibers embedded in laminated composite. IEEE Photon. Technol. Lett. 21(18), 1290–1292 (2009)

    Article  Google Scholar 

  5. Collombet, F., Mulle, M., Grunevald, Y.H., Zitoune, R.: Contribution of the embedded optical fiber with Bragg grating in composite structures for tests-simulations dialogue. Mech. Adv. Mater. Struct. 13, 429–439 (2006)

    Article  Google Scholar 

  6. Hernández, H., Collombet, F., Douchin, B., Choqueuse, D., Davies, P., González, J.L.: Entire life time monitoring of filament wound composite cylinders using Bragg grating sensors: I. Adapted tooling and instrumented specimen. Appl. Compos. Mater. Struct. 16(3), 173–182 (2009)

    Article  Google Scholar 

  7. Su, Z., Wang, X., Chen, Z., Ye, L., Wang, D.: A built-in active sensor network for health monitoring of composite structures. Smart Mater. Struct. 15, 1939–1949 (2006)

    Article  Google Scholar 

  8. Yan, Y., Yam, L.H.: Online detection of crack damage in composite plates using embedded piezoelectric actuators/sensors and wavelet analysis. Compos. Struct. 58, 29–38 (2002)

    Article  Google Scholar 

  9. Mulle, M, Zitoune, R, Collombet, F.: Through-the-thickness material properties identification in a technological specimen using 3D-DIC and embedded FBG measurements. Exp. Mech. 1340–1343 (2008)

  10. Grondel, S., Assaad, J., Delebarre, C., Moulin, E.: Health monitoring of a composite wingbox structure. Ultrason. 42, 819–824 (2004)

    Article  Google Scholar 

  11. Mueller, I., Chang, F.K., Roy, S., Mittal, M., Lonkar, K., Larrosa, C.: A robust structural health monitoring technique for airframe structures. Proceedings of the “7th International Workshop on Structural Health Monitoring” (2009)

  12. Mulle, M., Zitoune, R., Collombet, F., Olivier, P., Grunevald, Y.H.: Thermal expansion of carbon–epoxy laminates measured with embedded FBGS—Comparison with other experimental techniques and numerical simulation. Compos. Part A 38, 1414–1424 (2007)

    Article  Google Scholar 

  13. Hernández, H., Collombet, F., Douchin, B., Choqueuse, D., Davies, P., González, J.L.: Entire life time monitoring of filament wound composite cylinders using Bragg grating sensors: III. In-service external pressure loading. Appl. Compos. Mater. Struct. 16(3), 135–147 (2009)

    Article  Google Scholar 

  14. Hernández, H., Collombet, F., Douchin, B., Choqueuse, D., Davies, P., González, J.L.: Entire life time monitoring of filament wound composite cylinders using Bragg grating sensors: II. Process Monitoring. Appl. Compos. Mater. Struct. 16(4), 197–209 (2009)

    Article  Google Scholar 

  15. Kobayashi, M., Jen, C.K., Bussiere, J.F., Wu, K.T.: High-temperature integrated and flexible ultrasonic transducers for non-destructive testing. NTD & E Int. 42, 157–161 (2009)

    Google Scholar 

  16. Zhou, G., Sim, L.M.: Evaluating damage in a smart composite laminates using embedded EFPI strain sensors. Opt. Lasers Eng. 47, 1063–1068 (2009)

    Article  Google Scholar 

  17. Tadigadapa, S., Mateti, K.: Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas. Sci. Technol. 20, 1–30 (2009)

    Article  Google Scholar 

  18. Tan, P., Tong, L.: A sensor charge output deviation method for delamination detection using isolated piezoelectric actuator and sensor patches. Compos. Part B 37, 583–592 (2006)

    Article  Google Scholar 

  19. Yocum, M., Abramovich, H., Grunwald, A.: Fully reversed electromechanical behavior of composite laminate with embedded piezoelectric actuator/sensor. Smart Mater. Struct. 12, 556–564 (2003)

    Article  Google Scholar 

  20. Cheng, J., Wu, X., Li, G., Taheri, F., Pang, S.S.: Development of a smart composite pipe joint integrated with piezoelectric layers under tensile loading. Int. J. Solids Struct. 43, 5370–5385 (2006)

    Article  Google Scholar 

  21. Yan, W., Wang, J., Chen, W.Q.: Delamination assessment of a laminated composite beam using distributed piezoelectric sensor/actuator. Smart Mater. Struct. 20, 12–26 (2011)

    Article  Google Scholar 

  22. Mall, S., Coleman, J.M.: Monotonic and fatigue loading behavior of a quasi-isotropic graphite/epoxy laminate embedded with piezoelectric sensors. Smart Mater. Struct. 7, 822–832 (1998)

    Article  Google Scholar 

  23. Mall, S.: Integrity of graphite/epoxy laminate embedded with piezoelectric sensor/actuator under monotonic and fatigue loads. Smart Mater. Struct. 11, 527–533 (2002)

    Article  Google Scholar 

  24. Mall, S., Hsu, T.L.: Electromechanical fatigue behavior of graphite/epoxy laminate embedded with piezoelectric actuator. Smart Mater. Struct. 9, 78–84 (2000)

    Article  Google Scholar 

  25. Hansen, J.P., Vizzini, A.J.: Fatigue response of a host structure with interlaced embedded devices. Intell. Mater. Syst. Struct. 11, 902–909 (2000)

    Google Scholar 

  26. Huang, Y., Nemat-Nasser, S.: Structural integrity of composite laminates with embedded micro-sensors. Sensors Syst. Netw. 65, 1–5 (2002)

    Google Scholar 

  27. Crouzeix, L., Périé, J.N., Collombet, F., Douchin, B.: An orthotropic variant of the equilibrium GAP method applied to the analysis of a biaxial test on a composite material. Compos Part A: Appl Sci Manuf. 40(11), 1732–1740 (2009)

    Article  Google Scholar 

  28. Périé, J.N., Calloch, S., Cluzel, C., Hild, F.: Analysis of a multiaxial test on a C/C composite by using digital image correlation and a damage model. Exp. Mech. 42, 318–328 (2002)

    Article  Google Scholar 

  29. Collombet, F., Grunevald, Y.H., Zitoune, R., Mulle, M.: Economical value added of multi instrumented technological evaluators for the development of composite civil aircraft. Proceedings of the “16th National Journeys on Composites (JNC16)” (2009)

  30. Collombet, F., Luyckx, G., Sonnenfeld, C., Grunevald, Y.H., Davila, Y., Torres, M., Jacob, X., Wu, K.T., Rodriguez, S., Douchin, B., Crouzeix, L., Bazer-Bachi, R., Geernaert, T., Degrieck, J., Berghmans, F.: Cure monitoring of an autoclave manufactured industrial part: added value of complementary instrumentation. Proceedings of the “19th International Conference on Composite Materials”. 2013.

  31. Sonnenfeld, C., Luyckx, G., Collombet, F., Grunevald, Y.H., Douchin, B., Crouzeix, L., Torres, M., Geernaert, T., Sulejmani, S., Chah, K., Mergo, P., Thienpont, H., Berghmans, F.: Cure cycle monitoring of laminated carbon fiber-reinforced plastic with fiber Bragg gratings in microstructured optical fiber. Proceedings of the “19th International Conference on Composite Materials” (2013)

  32. Torres, M., Collombet, F., Douchin, B., Crouzeix, L., Bazer-Bachi, R., Grunevald, Y.-H., Lubin, J., Camps, T., Jacob, X., Rodriguez, S., Wu, K.-T.: Monitoring of the curing process of an industrial composite structure by TJS and FUT, Proceedings of the “35th International Conference on Metallurgy and Materials” (2013)

Download references

Acknowledgments

The present work is part of the research project “Multi-sensor Instrumentation for Composite Materials and Structures (I2MC)” financially supported by the Thematic Advanced Research Network for Aeronautic and Space Sciences & Technologies of Toulouse (RTRA STAE). The first author conveys his special appreciation to the National Council of Science and Technology of Mexico (CONACYT) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Torres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres, M., Collombet, F., Douchin, B. et al. Comparison between the Classic Sensor Embedding Method and the Monitoring Patch Embedding Method for Composites Instrumentation. Appl Compos Mater 21, 707–724 (2014). https://doi.org/10.1007/s10443-013-9368-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-013-9368-x

Keywords

Navigation