Skip to main content
Log in

Identification of Fracture Toughness for Discrete Damage Mechanics Analysis of Glass-Epoxy Laminates

Applied Composite Materials Aims and scope Submit manuscript

Abstract

A methodology for determination of the intralaminar fracture toughness is presented, based on fitting discrete damage mechanics (DDM) model predictions to available experimental data. DDM is constitutive model that, when incorporated into commercial finite element software via user material subroutines, is able to predict intralaminar transverse and shear damage initiation and evolution in terms of the fracture toughness of the composite. The applicability of the DDM model is studied by comparison to available experimental data for Glass-Epoxy laminates. Sensitivity of the DDM model to h- and p-refinement is studied. Also, the effect of in-situ correction of strength is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Notes

  1. Abaqus and Simulia are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the United States and/or other countries.

  2. Ansys®; is a registered trademark of ANSYS Inc.

References

  1. Barbero, E.J.: Prediction of compression strength of unidirectional polymer matrix composites. J. Compos. Mater. 32(5), 483–502 (1998)

    Article  Google Scholar 

  2. Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 62, 1633–1662 (2002)

    Article  Google Scholar 

  3. Davila, C., Camanho, P.: Failure Criteria for FRP Laminates in Plane Stress, pp. 1–28. NASA/TM-2003-212663 (2003)

  4. Barbero, E.J.: Introduction to Composite Materials Design, 2nd edn.CRC Press, Boca Raton (2010)

    Google Scholar 

  5. Ladevèze, P., Allix, O., Deü, J.F., Lévêque, D.: A mesomodel for localisation and damage computation in laminates. Comput. Methods Appl. Mech. Eng. 183(1–2), 105–122 (2000)

    Article  Google Scholar 

  6. Ladevèze, P., Allix, O., Douchin, B., Lévêque, D.: A computational method for damage intensity prediction in a laminated composite structure. In: Idelsohn, S., Oñate, E., Dvorkin, E. (eds.) Computational Mechanics. New Trends and Applications. CIMNE, Barcelona (1998)

    Google Scholar 

  7. Ladevèze, P.: A damage mesomodel of laminate composites. In: Lemaitre, J. (ed.) Handbook of Materials Behavior Models: Nonlinear Models and Properties, pp. 1004–1014. Academic, New York (2001)

    Chapter  Google Scholar 

  8. Abisset, E., Daghia, F., Ladevèze, P.: On the validation of a damage mesomodel for laminated composites by means of open-hole tensile tests on quasi-isotropic laminates . Compos. A: Appl. Sci. Manuf. 42(10), 1515–1524 (2011)

    Article  Google Scholar 

  9. Rastellini, F., Oller, S., Salomón, O., Oñate, E.: Composite materials non-linear modelling for long fibre-reinforced laminates: continuum basis, computational aspects and validations. Comput. Struct. 86(9), 879–896 (2008)

    Article  Google Scholar 

  10. Martinez, X., Oller, S., Barbero, E.: Study of delamination in composites by using the serial/parallel mixing theroy and a damage formulation. In: Camanho, P. (ed.) Mechanical Response of Composites, pp. 119–140. Springer, New York (2008)

    Chapter  Google Scholar 

  11. Martinez, X., Oller, S.: Numerical simulation of matrix reinforced composite materials subjected to compression loads. Arch. Comput. Methods Eng. 16(4), 357–397 (2009)

    Article  Google Scholar 

  12. Martinez, X., Rastellini, F., Oller, S., Flores, F., Oñate, E.: Computationally optimized formulation for the simulation of composite materials and delamination failures. Compos. B: Eng. 42(2), 134–144 (2011)

    Article  Google Scholar 

  13. Nuismer, R.J., Tan, S.C.: Constitutive relations of a cracked composite lamina. J. Compos. Mater. 22, 306–321 (1988)

    Article  Google Scholar 

  14. Tan, S.C., Nuismer, R.J.: A theory for progressive matrix cracking in composite laminates. J. Compos. Mater. 23, 1029–1047 (1989)

    Article  Google Scholar 

  15. Li, S., Reid, S.R., Soden, P.D.: A continuum damage model for transverse matrix cracking in laminated fibre-reinforced composites. Philos. Trans. Roy. Soc. Lond., Ser. A (Math. Phys. Eng. Sci.) 356, 2379–2412 (1998)

    Article  Google Scholar 

  16. Adolfsson, E., Gudmundson, P.: Matrix crack initiation and progression in composite laminates subjected to bending and extension. Int. J. Solids Struct. 36, 3131–3169 (1999)

    Article  Google Scholar 

  17. Nairn, J.A.: Polymer Matrix Composites, Comprehensive Composite Materials, Chapter Matrix Microcracking in Composites, vol. 2, pp. 403–432. Elsevier Science (2000)

  18. Berthelot, J.M.: Transverse cracking and delamination in cross-ply glass-fiber and carbon-fiber reinforced plastic laminates: static and fatigue loading. Appl. Mech. Rev. 56, 111–147 (2003)

    Article  Google Scholar 

  19. Nairn, J.A.: Finite Fracture Mechanics of Matrix Microcracking in Composites. Application of Fracture Mechanics to Polymers, Adhesives and Composites, pp. 207–212. Elsevier (2004)

  20. Lim, S.H., Li, S.: Energy release rates for transverse cracking and delaminations induced by transverse cracks in laminated composites. Compos. A 36(11), 1467–1476 (2005)

    Article  Google Scholar 

  21. Katerelos, D.T.G., Varna, J., Galiotis, C.: Energy criterion for modeling damage evolution in cross-ply composite laminates. Compos. Sci. Technol. 68, 2318–2324 (2008)

    Article  Google Scholar 

  22. Katerelos, D.T.G., Kashtalyan, M., Soutis, C., Galiotis, C.: Matrix cracking in polymeric composites laminates: modeling and experiments. Compos. Sci. Technol. 68, 2310–2317 (2008)

    Article  Google Scholar 

  23. Adumitroaie, A., Barbero, E.J.: Intralaminar damage model for laminates subjected to membrane and flexural deformations. Mech. Adv. Mater. Struct. http://dx.doi.org/10.1080/15376494.2013.796541

  24. Matzenmiller, A., Lubliner, J., Taylor, R.: A constitutive model for anisotropic damage in fiber-composites. Mech. Mater. 20, 125–152 (1995)

    Article  Google Scholar 

  25. Camanho, P., Davila, C.: Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials, pp. 1–37. NASA/TM-2002-211737 (2002)

  26. Simulia: Abaqus Analysis User’s Manual, version 6.12, section 24.3.

  27. GENOA Virtual Testing & Analysis Software, Alpha STAR Corporation. http://www.ascgenoa.com

  28. Helius: MCT Composite Materials Analysis Software, Firehole Composites. http://www.firehole.com/products/mct/

  29. Barbero, E.J.: Finite Element Analysis of Composite Materials using Abaqus. Web resource: http://barbero.cadec-online.com/feacm-abaqus

  30. Barbero, E.J.: Finite Element Analysis of Composite Materials Using ANSYS. Web Resource: http://barbero.cadec-online.com/feacm-ansys

  31. Barbero, E., Cortes, D.: A mechanistic model for transverse damage initiation, evolution, and stiffness reduction in laminated composites. Compos. B 41, 124–132 (2010)

    Article  Google Scholar 

  32. Oliver, J.: A consistent characteristic length for smeared cracking models. Int. J. Numer. Methods Eng. 28(2), 461–474, 02 (1989)

    Article  Google Scholar 

  33. Barbero, E.J., De Vivo, L.: Constitutive model for elastic damage in fiber-reinforced pmc laminae. Int. J. Damage Mech. 10(1), 73–93 (2001)

    Article  Google Scholar 

  34. Barbero, E.J., Cosso, F.A., Roman, R., Weadon, T.L.: Determination of material parameters for Abaqus progressive damage analysis of E-Glass Epoxy laminates. Compos. B: Eng. 46(3), 211–220 (2012) [ http://dx.doi.org/10.1016/j.compositesb.2012.09.069]

    Google Scholar 

  35. ANSYS Inc: Ansys Mechanical Apdl Programmer’S Manual, release 14.0 (2011)

  36. Computer Aided Design Environment for Composites (CADEC): http://en.cadec-online.com.

  37. Davies, P.: Protocols for Interlaminar Fracture Testing of Composites. Polymer and Composites Task Group. European Structural Integrity Society (ESIS), Plouzané (1992)

  38. Rikards, R., Buchholz, F.G., Wang, H., Bledzki, A.K., Korjakin, A., Richard, H.A.: Investigation of mixed mode i/ii interlaminar fracture toughness of laminated composites by using a cts type specimen. Eng. Fract. Mech. 61, 325–342 (1998)

    Article  Google Scholar 

  39. Yokozeki, T., Aoki, T., Ishikawa, T.: Transverse crack propagation in the specimen width direction of cfrp laminates under static tensile loadings. J. Compos. Mater. 36(17), 2085–2099 (2002)

    Article  Google Scholar 

  40. Barbero, E.J.: Finite Element Analysis of Composite Materials Using Abaqus. CRC Press, Boca Raton (2013)

    Google Scholar 

  41. Barbero, E.J.: Finite Element Analysis of Composite Materials Using ANSYS, 2nd edn. CRC Press, Boca Raton (2014)

    Google Scholar 

  42. Varna, J., Joffe, R., Talreja, R.: A synergistic damage mechanics analysis of transverse cracking in [±θ/904] s laminates. Compos. Sci. Technol. 61, 657–665 (2001)

    Article  Google Scholar 

  43. Barbero, E.J.: Finite Element Analysis of Composite Materials. Taylor & Francis, New York (2007)

    Google Scholar 

  44. Varna, J., Joffe, R., Akshantala, N., Talreja, R.: Damage in composite laminates with off-axis plies. Compos. Sci. Technol. 59, 2139–2147 (1999)

    Article  Google Scholar 

  45. Wang, A.S.D.: Fracture mechanics of sublaminate cracks in composite materials. Compos. Tech. Rev. 6, 45–62 (1984)

    Article  Google Scholar 

  46. Barbero, E.J., Cosso, F.A.: Determination of material parameters for discrete damage mechanics analysis of carbon-epoxy laminates. Compos. B 56, 638–646 (2014) [ http://dx.doi.org/10.1016/j.compositesb.2013.08.084]

    Article  Google Scholar 

  47. Lagarias, J., Reeds, J., Wright, M., Wright, P.: Convergence properties of the nelder-mead simplex method in low dimensions. SIAM J. Optim. 9, 112–147 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The financial support provided by NASA EPSCoR grant NNH09ZNE002C is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Barbero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbero, E.J., Cosso, F.A. & Martinez, X. Identification of Fracture Toughness for Discrete Damage Mechanics Analysis of Glass-Epoxy Laminates. Appl Compos Mater 21, 633–650 (2014). https://doi.org/10.1007/s10443-013-9359-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-013-9359-y

Keywords

Navigation