Skip to main content
Log in

Influence of Antithrombin on the Regimes of Blood Coagulation: Insights from the Mathematical Model

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Blood coagulation is regulated through a complex network of biochemical reactions of blood factors. The main acting enzyme is thrombin whose propagation in blood plasma leads to fibrin clot formation. Spontaneous clot formation is normally controlled through the action of different plasma inhibitors, in particular, through the thrombin binding by antithrombin. In the current study we develop a mathematical model of clot formation both in quiescent plasma and in blood flow and determine the analytical conditions on the antithrombin concentration corresponding to different regimes of blood coagulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Butenas S, Mann KG (2001) Blood coagulation. Biochem (Mosc) 61(3):3–12

    Google Scholar 

  • Chorin A (1968) Numerical solution of the Navier–Stokes equations. Math Comput 22(104):745–762. doi:10.1090/S0025-5718-1968-0242392-2

    Article  Google Scholar 

  • Dashkevich NM, Ovanesov MV, Balandina N, Karamzin SS, Shestakov PI, Soshitova NP, Tokarev AA, Panteleev MA, Ataullakhanov FI (2012) Thrombin activity propagates in space during blood coagulation as an excitation wave. Biophys J 103(10):2233–2240. doi:10.1016/j.bpj.2012.10.011

    Article  Google Scholar 

  • Galochkina T, Bouchnita A, Kurbatova P, Volpert V (2016) Reaction–diffusion waves of blood coagulation. arXiv:160407635

  • Ilyashenko V, Solovyov S, Pojman J (1995) Theoretical aspects of self-propagating reaction fronts in condensed medium. AIChE J 41(12):2631–2636

    Article  Google Scholar 

  • Neeves KB, Onasoga AA, Wufsus AR (2013) The use of microfluidics in hemostasis: clinical diagnostics and biomimetic models of vascular injury. Curr Opin Hematol 20(5):417–423. doi:10.1097/MOH.0b013e3283642186

    Article  Google Scholar 

  • Pieters J, Willems G, Hemker HC, Lindhout T (1988) Inhibition of factor Xa and factor X, by antithrombin III/heparin during factor X activation. J Biol Chem 263(30):15,313–15,318

    Google Scholar 

  • Quinsey NS, Greedy AL, Bottomley SP, Whisstock JC, Pike RN (2004) Antithrombin: in control of coagulation. Int J Biochem Cell Biol 36(3):386–389. doi:10.1016/S1357-2725(03)00244-9

    Article  Google Scholar 

  • Rosenberg RD (1989) Biochemistry of heparin antithrombin interactions, and the physiologic role of this natural anticoagulant mechanism. Am J Med 87(3B):2S–9S. doi:10.1016/0002-9343(89)80523-6

    Article  Google Scholar 

  • Rosenberg RD, Damus PS (1973) The purification and mechanism of action of human antithrombin-heparin cofactor. J Biol Chem 248(18):6490–6505

    Google Scholar 

  • Souter PJ, Thomas S, Hubbard AR, Poole S, Römisch J, Gray E (2001) Antithrombin inhibits lipopolysaccharide-induced tissue factor and interleukin-6 production by mononuclear cells, human umbilical vein endothelial cells, and whole blood. Crit Care Med 29(1):134–139

    Article  Google Scholar 

  • Volpert AI, Volpert VA, Volbert VA (1994) Traveling wave solutions of parabolic systems, Translation of mathematical monographs, vol 140

  • Wufsus AR, Macera NE, Neeves KB (2013) The hydraulic permeability of blood clots as a function of fibrin and platelet density. Biophys J 104(8):1812–1823. doi:10.1016/j.bpj.2013.02.055

    Article  Google Scholar 

  • Zarnitsina VI, Pokhilko AV, Ataullakhanov FI (1996) A mathematical model for the spatio-temporal dynamics of intrinsic pathway of blood coagulation. I. The model description. Thromb Res 84(4):225–236. doi:10.1016/S0049-3848(96)00182-X

    Article  Google Scholar 

  • Zarnitsina VI, Ataullakhanov FI, Lobanov AI, Morozova OL (2001) Dynamics of spatially nonuniform patterning in the model of blood coagulation. Chaos 11(1):57–70. doi:10.1063/1.1345728

    Article  Google Scholar 

  • Zeldovich YB, Frank-Kamenetskii DA (1938) A theory of thermal propagation of flame. Acta Physicochim USSR 9:341–350

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Galochkina.

Appendix

Appendix

1.1 Model of the Intrinsic Pathway Functioning

We model the reactions of coagulation cascade presented in the Fig. 8. Straight arrows indicate factors activation, curved arrows indicate the catalytic actions of factors on other factors activation reactions. Ia, IIa, Va, VIIIa, IXa, Xa, XIa denote the concentrations of activated factor forms and I, II, V, VIII, IX, X, XI denote the inactivated forms. Coagulation cascade is launched when sufficient initial amount of thrombin (IIa) is formed and starts the positive feedback loops. As the result we have the conversion of fibrinogen (I) to fibrin (Ia) and fibrin polymerization (Ip). Fibrin polymer finally forms the clot scaffold.

Fig. 8
figure 8

Schematic representation of the coagulation intrinsic pathway of coagulation cascade

1.2 Parameter Values for Numerical Simulations

Parameter values are taken from Zarnitsina et al. (2001), and Butenas and Mann (2001) (Table 1).

Table 1 The values of the parameters used in numerical simulations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchnita, A., Galochkina, T. & Volpert, V. Influence of Antithrombin on the Regimes of Blood Coagulation: Insights from the Mathematical Model. Acta Biotheor 64, 327–342 (2016). https://doi.org/10.1007/s10441-016-9291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-016-9291-2

Keywords

Mathematics Subject Classification

Navigation