Skip to main content

Advertisement

Log in

Population Density and Moment-based Approaches to Modeling Domain Calcium-mediated Inactivation of L-type Calcium Channels

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

We present a population density and moment-based description of the stochastic dynamics of domain \({\text{Ca}}^{2+}\)-mediated inactivation of L-type \({\text{Ca}}^{2+}\) channels. Our approach accounts for the effect of heterogeneity of local \({\text{Ca}}^{2+}\) signals on whole cell \({\text{Ca}}^{2+}\) currents; however, in contrast with prior work, e.g., Sherman et al. (Biophys J 58(4):985–995, 1990), we do not assume that \({\text{Ca}}^{2+}\) domain formation and collapse are fast compared to channel gating. We demonstrate the population density and moment-based modeling approaches using a 12-state Markov chain model of an L-type \({\text{Ca}}^{2+}\) channel introduced by Greenstein and Winslow (Biophys J 83(6):2918–2945, 2002). Simulated whole cell voltage clamp responses yield an inactivation function for the whole cell \({\text{Ca}}^{2+}\) current that agrees with the traditional approach when domain dynamics are fast. We analyze the voltage-dependence of \({\text{Ca}}^{2+}\) inactivation that may occur via slow heterogeneous domain [\({\text{Ca}}^{2+}\)]. Next, we find that when channel permeability is held constant, \({\text{Ca}}^{2+}\)-mediated inactivation of L-type channels increases as the domain time constant increases, because a slow domain collapse rate leads to increased mean domain [\({\text{Ca}}^{2+}\)] near open channels; conversely, when the maximum domain [\({\text{Ca}}^{2+}\)] is held constant, inactivation decreases as the domain time constant increases. Comparison of simulation results using population densities and moment equations confirms the computational efficiency of the moment-based approach, and enables the validation of two distinct methods of truncating and closing the open system of moment equations. In general, a slow domain time constant requires higher order moment truncation for agreement between moment-based and population density simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ashcroft FM, Stanfield PR (1982) Calcium inactivation in skeletal muscle fibres of the stick insect, carausius morosus. J Physiol 330:349–372

    Article  Google Scholar 

  • Baumann L, Gerstner A, Zong X, Biel M, Wahl-Schott C (2004) Functional characterization of L-type \({\text{Ca}}^{2+}\) channel \({\text{Ca}_{\text{v}} 1.4\alpha 1}\) from mouse retina. Invest Ophthal Vis Sci 45(2):708–713

    Article  Google Scholar 

  • Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415(6868):198–205

    Article  Google Scholar 

  • Bertram R, Sherman A (1998) Population dynamics of synaptic release sites. SIAM J Appl Math 58(1):142–169

    Article  Google Scholar 

  • Budde T, Meuth S, Pape HC (2002) Calcium-dependent inactivation of neuronal calcium channels. Nat Rev Neurosci 3:873–883

    Article  Google Scholar 

  • Cannell MB, Cheng H, Lederer WJ (1995) The control of calcium release in heart muscle. Science 268(5213):1045–1049

    Article  Google Scholar 

  • Cheng H, Lederer WJ, Cannell MB (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262(5134):740–744

    Article  Google Scholar 

  • Christel C, Lee A (2012) \({\text{Ca}}^{2+}\)-dependent modulation of voltage-gated \({\text{Ca}}^{2+}\) channel. Biochimica et Biophysica Acta (BBA)—General Subjects 1820(8):1243–1252

    Article  Google Scholar 

  • Cox DH (2014) Modeling a \({\text{Ca}}^{2+}\) channel/\(\text{BK}_{\text{Ca}}\) channel complex at the single-complex level. Biophys J 107:2797–2814

    Article  Google Scholar 

  • Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, Schwartz A, Snutch TP, Tanabe T, Birnbaumer L et al (2000) Nomenclature of voltage-gated calcium channels. Neuron 25(3):533–535

    Article  Google Scholar 

  • Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22:403–434

    Article  Google Scholar 

  • Greenstein JL, Winslow RL (2002) An integrative model of the cardiac ventricular myocyte incorporating local control of \({\text{Ca}}^{2+}\) release. Biophys J 83(6):2918–2945

    Article  Google Scholar 

  • Haack JA, Rosenberg RL (1994) Calcium-dependent inactivation of L-type calcium channels in planar lipid bilayers. Biophys J 66(4):1051–1060

    Article  Google Scholar 

  • Hammond RS, Bond CT, Strassmaier T, Ngo-Anh TJ, Adelman JP, Maylie J, Stackman RW (2006) Small-conductance \({\text{Ca}}^{2+}\)-activated potassium channel type 2 (SK2) modulates hippocampal learning, memory, and synaptic plasticity. J Neurosci 26(6):1844–1853

    Article  Google Scholar 

  • Hartman JA, Sobie EA, Smith GD (2010) Calcium sparks and homeostasis in a minimal model of local and global calcium responses in quiescent ventricular myocytes. Am J Physiol Heart Cir Physiol  299: H1996–H2008 First published Spetember 17, 2010; doi: 10.1152/ajpheart.00293.2010

  • Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Huang G, Kim JY, Dehoff M, Mizuno Y, Kamm KE, Worley PF, Muallem S, Zeng WZ (2014) \({\text{Ca}}^{2+}\) signaling in microdomains: Homer1 mediates the interaction between RyR2 and \({\text{Ca}}_{\text{v}} 1.2\) to regulate excitation-contraction coupling. J Biol Chem 282(19):14283–14290

    Article  Google Scholar 

  • Huertas MA, Smith GD (2006) A multivariate population density model of the dLGN/PGN relay. J Comput Neurosci 21(2):171–189

    Article  Google Scholar 

  • Huertas MA, Smith GD (2007) The dynamics of luminal depletion and the stochastic gating of \({\text{Ca}}^{2+}\)-activated \({\text{Ca}}^{2+}\) channels and release sites. J Theor Biol 246(2):332–354

    Article  Google Scholar 

  • Jafri MS, Rice JJ, Winslow RL (1998) Cardiac \({\text{Ca}}^{2+}\) dynamics: the roles of ryanodine receptor adaptation and sarcoplasmic reticulum load. Biophys J 74(3):1149–1168

    Article  Google Scholar 

  • Koschak A, Reimer D, Huber I, Grabner M, Glossmann H, Engel J, Strissnig J (2001) \(\alpha\)1D (\({\text{Ca}}_{\text{v}}1.3\)) subunits can form L-type \({\text{Ca}}^{2+}\) channels activating at negative voltages. J Biol Chem 276:22100–22106

    Article  Google Scholar 

  • Li YX, Rinzel J, Vergara L, Stojilković SS (1995) Spontaneous electrical and \({\text{Ca}}^{2+}\) oscillations in unstimulated pituitary gonadotrophs. Biophys J 69(3):785–795

    Article  Google Scholar 

  • Lipscombe D, Helton TD, Xu W (2004) L-type calcium channels: the low down. J Neurophysiol 92:2633–2641

    Article  Google Scholar 

  • Lipscombe D, Pan QJ, Gray AC (2002) Functional diversity in neuronal voltage-gated \({\text{Ca}}^{2+}\) channels by alternative splicing of \(\text{Ca}_{\text{v}}\alpha _1\). Mol Neurobiol 26(1):21–44

    Article  Google Scholar 

  • Marcantoni A, Baldelli P, Hernandez-Guijo JM, Comunanza V, Carabelli V, Carbone E (2007) L-type calcium channels in adrenal chromatin cells: role in pace-making and secretion. Cell Calcium 42:397–408

    Article  Google Scholar 

  • Mazzag B, Tignanelli C, Smith GD (2005) The effect of residual \({\text{Ca}}^{2+}\) on the stochastic gating of \({\text{Ca}}^{2+}\)-regulated \({\text{Ca}}^{2+}\) channels. J Theor Biol 235(1):121–150

    Article  Google Scholar 

  • Murphy TH, Vorley PF, Baraban JM (1991) L-type voltage-sensitive calcium channels mediate synaptic activation of immediate early genes. Neuron 7(4):625–635

    Article  Google Scholar 

  • Plant TD (1988) Properties and calcium-dependent inactivation of calcium currents in cultured mouse pancreatic B-cells. J Physiol 404:731–747

    Article  Google Scholar 

  • Pribnow D, Johnson-Pais T, Bond CT, Keen J, Johnson RA, Janowsky A, Silvia C, Thayer M, Maylie J, Adelman JP (1999) Skeletal muscle and small-conductance calcium-activated potassium channels. Muscle Nerve 22(6):742–750

    Article  Google Scholar 

  • Qi XY, Diness JG, Brundel BJ, Zhou XB, Naud P, Wu CT, Huang J, Harada M, Aflaki M, Dobrev D, Grunnet M, Nattel S (2014) Role of small-conductance calcium-activated potassium channels in atrial electrophysiology and fibrillation in the dog. Circulation 129(4):430–440

    Article  Google Scholar 

  • Sherman A, Keizer J, Rinzel J (1990) Domain model for \({\text{Ca}}^{2+}\)-inactivation of \({\text{Ca}}^{2+}\) channels at low channel density. Biophys J 58(4):985–995

    Article  Google Scholar 

  • Simon M, Perrier JF, Jounsgaard J (2003) Subcellular distribution of L-type \({\text{Ca}}^{2+}\) channels responsible for plateau potentials in motoneurons from the lumbar spinal cord of the turtle. Eur J Neurosci 18:258–266

    Article  Google Scholar 

  • Stanley DA, Bardakjian BL, Spano ML, Ditto WL (2011) Stochastic amplification of \({\text{Ca}}^{2+}\)-activated potassium currents in \({\text{Ca}}^{2+}\) microdomains. J Comput Neurosci 31(3):647–666

    Article  Google Scholar 

  • Tanskanen AJ, Greenstein JL, O’Rouke B, Winslow RL (2005) The role of stochastic and modal gating of cardiac L-type \({\text{Ca}}^{2+}\) channels on early after-depolarizations. Biophys J 88:85–95

    Article  Google Scholar 

  • Torrente A, Mesirca P, Neco P (2011) \({\text{Ca}}_{\text{v}}1.3\) L-type calcium channels-mediated ryanodine receptor dependent calcium release controls heart rate. Biophys J 100:567a

    Article  Google Scholar 

  • Vandael DH, Marcantoni A, Mahapatra S, Caro A, Ruth P, Zuccotti A, Knipper M, Carbone E (2010) \({\text{Ca}}_{\text{v}}1.3\) and BK channels for timing and regulating cell firing. Mol Neurobiol 42:185–198

    Article  Google Scholar 

  • Vergaraa C, Latorrea R, Marrionb NV, Adelmanb JP (1988) Calcium-activated potassium channels. Curr Opin Neurobiol 8(3):321–329

    Article  Google Scholar 

  • Williams GSB, Chikando AC, Tuan HT, Sobie EA, Lederer WJ, Jafri MS (2011) Dynamics of calcium sparks and calcium leak in the heart. Biophys J 101:1287–1296

    Article  Google Scholar 

  • Williams GSB, Huertas MA, Sobie EA, Jafri MS, Smith GD (2007) A probability density approach to modeling local control of \({\text{Ca}}^{2+}\)-induced \({\text{Ca}}^{2+}\) release in cardiac myocytes. Biophys J 92(7):2311–2328

    Article  Google Scholar 

  • Williams GSB, Huertas MA, Sobie EA, Jafri MS, Smith GD (2008) Moment closure for local control models of \({\text{Ca}}^{2+}\)-induced \({\text{Ca}}^{2+}\) release in cardiac myocytes. Biophys J 95(4):1689–1703

    Article  Google Scholar 

  • Zweifach A, Lewis RS (1995) Rapid inactivation of depletion-activated calcium current (ICRAC) due to local calcium feedback. J Gen Physiol 105(2):209–226

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported in part by National Science Foundation Grant DMS 1121606 to GDS and the Biomathematics Initiative at The College of William & Mary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory D. Smith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Hardcastle, K., Weinberg, S.H. et al. Population Density and Moment-based Approaches to Modeling Domain Calcium-mediated Inactivation of L-type Calcium Channels. Acta Biotheor 64, 11–32 (2016). https://doi.org/10.1007/s10441-015-9271-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-015-9271-y

Keywords

Navigation