Skip to main content
Log in

A New KAM Theorem for the Hyperbolic Lower Dimensional Tori in Reversible Systems

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

This paper puts forward a new KAM theorem for the hyperbolic lower dimensional tori in reversible system without assuming any non-degeneracy condition, which can be viewed as a unified form under all kinds of non-degenerate conditions, including Kolmogorov, Bruno and Rüssmann non-degeneracy condition. The theorem with some non-degeneracy conditions not only includes many previous achievements on KAM theory in reversible systems, but also gives some interesting results on the persistence of hyperbolic lower dimensional invariant tori with prescribed frequency in reversible system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold, V.I.: Reversible systems. In: Nonlinear and Turbulent Processes in Physics, Kiev, 1983, vol. 3, pp. 1161–1174. Harwood Academic, Chur (1984)

    Google Scholar 

  2. Broer, H.W., Huitema, G.B., Sevryuk, M.B.: Quasi-Periodic Motions in Families of Dynamical Systems, Order Amidst Chaos. Lecture Notes in Math., vol. 1645. Springer, Berlin (1996)

    MATH  Google Scholar 

  3. Broer, H.W., Huitema, G.B.: Unfoldings of quasi-periodic tori in reversible systems. J. Dyn. Differ. Equ. 7, 191–212 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Broer, H.W., Hoo, J., Naudot, V.: Normal linear stability of quasi-periodic tori. J. Differ. Equ. 232, 355–418 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Broer, H.W., Ciocci, M.C., Hanßmann, H., Vanderbauwhede, A.: Quasi-periodic stability of normally resonant tori. Physica D 238, 309–318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Broer, H.W., Ciocci, M.C., Hanßmann, H.: The quasi-periodic reversible Hopf bifurcation. Int. J. Bifurc. Chaos Appl. Sci. Eng. 17, 2605–2623 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hanßmann, H.: Quasi-periodic bifurcations in reversible systems. Regul. Chaotic Dyn. 16, 51–60 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, B.: On lower dimensional invariant tori in reversible systems. J. Differ. Equ. 176, 158–194 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lu, X., Xu, J.: Invariant tori with prescribed frequency for nearly integrable Hamiltonian systems. J. Math. Phys. 55, 082702 (2014). doi:10.1063/1.4886476

    Article  MathSciNet  MATH  Google Scholar 

  10. Moser, J.: Convergent series expansions for quasi-periodic motions. Math. Ann. 169, 136–176 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  11. Moser, J.: Stable and Random Motions in Dynamical Systems, with Special Emphasis on Celestial Mechanics. Annals Mathematics Studies, vol. 77. Princeton University Press, Princeton (1973)

    MATH  Google Scholar 

  12. Kong, Y., Xu, J.: Persistence of lower dimensional hyperbolic tori for reversible system. Appl. Math. Comput. 236, 408–421 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Parasyuk, I.O.: Conservation of quasiperiodic motions in reversible multifrequency systems. Dokl. Akad. Nauk Ukr. SSR, Ser. A. 9, 19–22 (1982)

    MathSciNet  MATH  Google Scholar 

  14. Pöschel, J.: On elliptic lower-dimensional tori in Hamiltonian systems. Math. Z. 202, 559–608 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pöschel, J.: A lecture on the classical KAM theorem. In: Katok, A., de la Llave, R., Pesin, Ya., Weiss, H. (eds.) Smooth Ergodic Theory and Its Applications, AMS Summer Research Institute, Seattle, 1999. Proc. Symposia in Pure Mathematics, vol. 69, pp. 707–732. Am. Math. Soc., Providence (2001)

    Chapter  Google Scholar 

  16. Sevryuk, M.B.: Reversible Systems. Lecture Notes in Math., vol. 1211. Springer, Berlin (1986)

    MATH  Google Scholar 

  17. Sevryuk, M.B.: Invariant m-dimensional tori of reversible systems with phase space of dimension greater than 2m. J. Sov. Math. 51, 2374–2386 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sevryuk, M.B.: New results in the reversible KAM theory. In: Kuksin, S.B., Lazutkin, V.F., Pöschel, J. (eds.) Seminar on Dynamical Systems, pp. 184–199. Birkhäuser, Basel (1994)

    Chapter  Google Scholar 

  19. Sevryuk, M.B.: The iteration-approximation decoupling in the reversible KAM theory. Chaos 5, 552–565 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sevryuk, M.B.: Partial preservation of frequencies in KAM theory. Nonlinearity 19, 1099–1140 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tkhai, V.N.: Reversibility of mechanical systems. J. Appl. Math. Mech. 55, 461–468 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, X., Xu, J.: Gevrey-smoothness of invariant tori for analytic reversible systems under Rüssmann’s non-degeneracy condition. Discrete Contin. Dyn. Syst., Ser. A 25, 701–718 (2009)

    Article  MATH  Google Scholar 

  23. Wang, X., Xu, J., Zhang, D.: Persistence of lower dimensional elliptic invariant tori for a class of nearly integrable reversible systems. Discrete Contin. Dyn. Syst., Ser. B 14, 1237–1249 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, X., Zhang, D., Xu, J.: Persistence of lower dimensional tori for a class of nearly integrable reversible systems. Acta Appl. Math. 115, 193–207 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, X., Zhang, D., Xu, J.: On the persistence of lower-dimensional elliptic tori with prescribed frequencies in reversible systems. Discrete Contin. Dyn. Syst. 36, 1677–1692 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, X., Xu, J., Zhang, D.: Degenerate lower dimensional tori in reversible systems. J. Math. Anal. Appl. 387, 776–790 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, X., Xu, J., Zhang, D.: On the persistence of degenerate lower-dimensional tori in reversible systems. Ergod. Theory Dyn. Syst. 35, 2311–2333 (2015). doi:10.1017/etds.2014.34

    Article  MathSciNet  MATH  Google Scholar 

  28. Wei, B.: Perturbations of lower dimensional tori in the resonant zone for reversible systems. J. Math. Anal. Appl. 253, 558–577 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36, 63–89 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, J.: Normal form of reversible systems and persistence of lower dimensional tori under weaker nonresonance conditions. SIAM J. Math. Anal. 36, 233–255 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu, J., Lu, X.: General KAM theorems and their applications to invariant tori with prescribed frequencies. arXiv:1504.00726 [math.DS]

Download references

Acknowledgements

The authors are very grateful to the referees for their many helpful suggestions for this revised version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaocai Wang.

Additional information

The first author is supported by National Natural Science Foundation of China (11501234) and Qing Lan Project. The second author is supported by National Natural Science Foundation of China (11371090). The third author is supported by National Natural Science Foundation of China (11001048).

Appendix

Appendix

In this section we formulate a lemma which have been used in the previous section. Let \(\mathcal{B}_{s}\) denote the space of all real analytic functions \(f(x)\) defined in the complex domain \(D(s)=\{x:|\operatorname{Im} x|\leq s\}\); that is

$$\mathcal{B}_{s}= \bigl\{ f(x,\xi) \bigm| f(x,\xi)=\sum_{k}f_{k}(\xi) e^{\sqrt {-1}\langle k,x\rangle},\ \|f\|_{\mathcal{O}\times D(s,r)} ^{\alpha }< \infty\bigr\} . $$

Then it is easy to see that \(\mathcal{B}_{s} \) is a Banach space.

Lemma 2

Let \(\lambda_{1}(\xi),\ldots,\lambda_{2p}(\xi) \) be eigenvalues of the matrix \(\varOmega(\xi) \) such that

$$ \bigl|\operatorname{Re}\lambda_{i} (\xi)\bigr|\geq\sigma,\quad \textit{for } \forall\xi\in\mathcal{O},\ i=1,2,\ldots,2p. $$
(3.1)

Then, there exists a sufficiently small \(\epsilon_{0}\) depending only on \(\varOmega\) such that for any \(\tilde{\varOmega}(x)\in\mathcal{B}_{s}\), \(g(x)\in\mathcal{B}_{s}\), if \(\|\tilde{\varOmega} \|^{\alpha}_{\mathcal{O}\times D(s,r) }\leq \epsilon_{0}\), the equation

$$\partial_{\omega}f(x) - (\varOmega +\tilde{\varOmega}(x))f(x)=g(x) $$

has a solution \(f(x)\in\mathcal{B}_{s}\) with

$$\|f\|^{\alpha}_{\mathcal{O}\times D(s,r) }\leq c \|g\|^{\alpha}_{\mathcal {O}\times D(s,r) }, $$

where the constant \(c\) depends only on \(\varOmega\).

For this lemma, we refer to Lemma 3.2 in [24].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Xu, J. & Zhang, D. A New KAM Theorem for the Hyperbolic Lower Dimensional Tori in Reversible Systems. Acta Appl Math 143, 45–61 (2016). https://doi.org/10.1007/s10440-015-0027-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-015-0027-0

Keywords

Mathematics Subject Classification (2000)

Navigation