Skip to main content
Log in

American and Bermudan Options in Currency Markets with Proportional Transaction Costs

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

The pricing and hedging of a general class of options (including American, Bermudan and European options) on multiple assets are studied in the context of currency markets where trading is subject to proportional transaction costs, and where the existence of a risk-free numéraire is not assumed. Constructions leading to algorithms for computing the prices, optimal hedging strategies and stopping times are presented for both long and short option positions in this setting, together with probabilistic (martingale) representations for the option prices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bensaid, B., Lesne, J.P., Pagès, H., Scheinkman, J.: Derivative asset pricing with transaction costs. Math. Finance 2, 63–86 (1992)

    Article  MATH  Google Scholar 

  2. Bouchard, B., Chassagneux, J.F.: Representation of continuous linear forms on the set of ladlag processes and the pricing of American claims under proportional transaction costs. Electron. J. Probab. 14, 612–632 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Bouchard, B., Temam, E.: On the hedging of American options in discrete time markets with proportional transaction costs. Electron. J. Probab. 10, 746–760 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyle, P.P., Vorst, T.: Option replication in discrete time with transaction costs. J. Finance XLVII(1), 347–382 (1992)

    Google Scholar 

  5. Chalasani, P., Jha, S.: Randomized stopping times and American option pricing with transaction costs. Math. Finance 11(1), 33–77 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, G.Y., Palmer, K., Sheu, Y.C.: The least cost super replicating portfolio in the Boyle-Vorst model with transaction costs. Int. J. Theor. Appl. Finance 11(1), 55–85 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. De Vallière, F., Denis, E., Kabanov, Y.: Hedging of American options under transaction costs. Finance Stoch. 13, 105–119 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Delbaen, F., Kabanov, Y.M., Valkeila, E.: Hedging under transaction costs in currency markets: a discrete-time model. Math. Finance 12, 45–61 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Edirisinghe, C., Naik, V., Uppal, R.: Optimal replication of options with transactions costs and trading restrictions. J. Financ. Quant. Anal. 28(1), 117–138 (1993)

    Article  Google Scholar 

  10. Franz, M.: Convex—a Maple package for convex geometry. http://www.math.uwo.ca/~mfranz/convex/ (2009)

  11. Kabanov, Y.M.: Hedging and liquidation under transaction costs in currency markets. Finance Stoch. 3, 237–248 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kabanov, Y.M., Rásonyi, M., Stricker, C.: No-arbitrage criteria for financial markets with efficient friction. Finance Stoch. 6, 371–382 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kabanov, Y.M., Stricker, C.: The Harrison-Pliska arbitrage pricing theorem under transaction costs. J. Math. Econ. 35, 185–196 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kociński, M.: Optimality of the replicating strategy for American options. Appl. Math. 26(1), 93–105 (1999)

    MathSciNet  MATH  Google Scholar 

  15. Kociński, M.: Pricing of the American option in discrete time under proportional transaction costs. Math. Methods Oper. Res. 53, 67–88 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Korn, R., Müller, S.: The decoupling approach to binomial pricing of multi-asset options. J. Comput. Finance 12(3), 1–30 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Löhne, A., Rudloff, B.: An algorithm for calculating the set of superhedging portfolios and strategies in markets with transaction costs. Int. J. Theor. Appl. Financ. 17, 1450012 (2014). doi:10.1142/S0219024914500125, 33 pp.

    Article  MATH  Google Scholar 

  18. Palmer, K.: A note on the Boyle-Vorst discrete-time option pricing model with transactions costs. Math. Finance 11(3), 357–363 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pennanen, T., King, A.J.: Arbitrage Pricing of American Contingent Claims in Incomplete Markets—A Convex Optimization Approach. In: Stochastic Programming E-Print Series 14 (2004). http://edoc.hu-berlin.de/docviews/abstract.php?id=26772

    Google Scholar 

  20. Perrakis, S., Lefoll, J.: Derivative asset pricing with transaction costs: an extension. Comput. Econ. 10, 359–376 (1997)

    Article  MATH  Google Scholar 

  21. Perrakis, S., Lefoll, J.: Option pricing and replication with transaction costs and dividends. J. Econ. Dyn. Control 24, 1527–1561 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Perrakis, S., Lefoll, J.: The American put under transactions costs. J. Econ. Dyn. Control 28, 915–935 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics and Physics. Princeton University Press, Princeton (1996)

    MATH  Google Scholar 

  24. Roux, A., Tokarz, K., Zastawniak, T.: Options under proportional transaction costs: an algorithmic approach to pricing and hedging. Acta Appl. Math. 103(2), 201–219 (2008). doi:10.1007/s10440-008-9231-5

    Article  MathSciNet  MATH  Google Scholar 

  25. Roux, A., Zastawniak, T.: American options under proportional transaction costs: pricing, hedging and stopping algorithms for long and short positions. Acta Appl. Math. 106, 199–228 (2009). doi:10.1007/s10440-008-9290-7

    Article  MathSciNet  MATH  Google Scholar 

  26. Rutkowski, M.: Optimality of replication in the CRR model with transaction costs. Appl. Math. 25(1), 29–53 (1998)

    MathSciNet  MATH  Google Scholar 

  27. Schachermayer, W.: The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time. Math. Finance 14(1), 19–48 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tokarz, K., Zastawniak, T.: American contingent claims under small proportional transaction costs. J. Math. Econ. 43(1), 65–85 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alet Roux.

Appendix: Proof of Lemma 2

Appendix: Proof of Lemma 2

Lemma 2 in Sect. 5 depends on the following technical result.

Lemma 3

Fix some i=1,…,d, and let A 1,…A n be non-empty closed convex sets in \(\mathbb{R}^{d}\) such that \(\operatorname {dom}\delta^{\ast}_{A_{k}}\) is compactly i-generated for all k. Define \(A:=\bigcap_{k=1}^{n} A_{k}\neq \emptyset\); then

$$\begin{aligned} \delta^\ast_A = \operatorname {conv}\bigl\{ \delta^\ast_{A_1}, \ldots,\delta^\ast_{A_n}\bigr\} , \end{aligned}$$

and for each \(x\in\sigma_{i}(\operatorname {dom}\delta^{\ast}_{A})\) there exist α 1,…,α n ≥0 and x 1,…,x n with \(x_{k}\in\sigma_{i}(\operatorname {dom}\delta^{\ast}_{A_{k}})\) for all k such that

$$\begin{aligned} \delta^\ast_A(x) = \sum_{k=1}^n\alpha_k\delta^\ast_{A_k}(x_k), \quad \sum_{k=1}^n\alpha_k = 1, \ \sum_{k=1}^n\alpha_kx_k = x. \end{aligned}$$

The cone \(\operatorname {dom}\delta^{\ast}_{A}\) is moreover compactly i-generated and

$$\begin{aligned} \operatorname {dom}\delta^\ast_{A} = \operatorname {conv}\Biggl[\bigcup _{k=1}^n\operatorname {dom}\delta^\ast _{A_k}\Biggr]. \end{aligned}$$
(A.1)

Proof

Let \(f:=\operatorname {conv}\{\delta^{\ast}_{A_{1}}, \ldots, \delta^{\ast}_{A_{n}}\}\). Then \(\operatorname {cl}f = \delta^{\ast}_{A}\); see [23, Corollary 16.5.1]. Since \(\delta^{\ast}_{A}\) is proper it follows that f is proper and

$$\begin{aligned} \overline{\operatorname {epi}f} = \operatorname {epi}\delta^\ast_A \end{aligned}$$
(A.2)

by (2.1), so that \(\delta^{\ast}_{A}=\operatorname {cl}f\le f\).

For any k=1,…,n, the compact i-generation of \(\operatorname {dom}\delta^{\ast}_{A_{k}}\) means that \(\sigma_{i}(\operatorname {dom}\delta^{\ast}_{A_{k}})\) is compact and non-empty. Thus the positive homogeneity of \(\delta^{\ast}_{A_{k}}\) guarantees the existence of a closed proper convex function g k with \(\operatorname {dom}g_{k}=\sigma_{i}(\operatorname {dom}\delta^{\ast}_{A_{k}})\) compact such that \(\delta ^{\ast}_{A_{k}}\) is generated by g k , i.e.

$$\begin{aligned} \delta^\ast_{A_k}(y) = \begin{cases} \lambda g_k(x) &\mbox{if there exists } \lambda\ge0\mbox{ and }x\in \operatorname {dom}g_k\mbox{ such that }y=\lambda x,\cr \infty& \mbox{otherwise}. \end{cases} \end{aligned}$$

Let \(g:=\operatorname {conv}\{g_{1},\ldots,g_{n}\}\); then

$$\begin{aligned} \operatorname {dom}g = \operatorname {conv}\Biggl[\bigcup_{k=1}^n \sigma_i\bigl(\operatorname {dom}\delta^\ast_{A_k}\bigr)\Biggr] \end{aligned}$$

is compact [23, Corollary 9.8.2]. Moreover, g is closed and proper, and for each \(x\in \operatorname {dom}g\) there exist α 1,…,α n ≥0 and x 1,…,x n such that \(x_{k}\in\sigma _{i}(\operatorname {dom}\delta^{\ast}_{A_{k}})\) for all k and

$$\begin{aligned} g(x) = \sum_{k=1}^n\alpha_kg_k(x_k), \quad\sum_{k=1}^n\alpha_k = 1, \ \sum_{k=1}^n\alpha_kx_k = x; \end{aligned}$$
(A.3)

see [23, Corollary 9.8.3] (the common recession function is \(\delta^{\ast}_{\mathbb{R}^{d}}\) since \(\operatorname {dom}g_{k}\) is compact for all k).

Let h be the positively homogeneous function generated by g, i.e.

$$\begin{aligned} h(y) := \begin{cases} \lambda g(x) &\mbox{if there exists } \lambda\ge0\mbox{ and }x\in \operatorname {dom}g\mbox{ such that }y=\lambda x,\cr \infty& \mbox{otherwise.} \end{cases} \end{aligned}$$

Clearly, h is a proper convex function and \(\operatorname {dom}h = \operatorname {cone}(\operatorname {dom}g)\) is compactly i-generated. The function h is moreover closed since

$$\begin{aligned} \operatorname {epi}h = \bigl(\operatorname {cone}(\operatorname {epi}g)\bigr) \cup\bigl\{ (0,\lambda):\lambda\ge0\bigr\} = \overline {\operatorname {epi}h}; \end{aligned}$$

see [23, Theorem 9.6], and it is majorised by \(\delta^{\ast}_{A_{1}}, \ldots, \delta^{\ast}_{A_{n}}\), hence hf. Since h is closed, it then follows from (A.2) that

$$\begin{aligned} h \le\delta^\ast_A \le f. \end{aligned}$$
(A.4)

Fix any \(y\in \operatorname {dom}h\). There exist λ≥0 and \(x\in\sigma_{i}(\operatorname {dom}h)=\operatorname {dom}g\) such that y=λx. Fix any α 1,…,α n ≥0 and x 1,…,x n satisfying (A.3) and where \(x_{k}\in\sigma_{i}(\operatorname {dom}\delta^{\ast}_{A_{k}})\) for all k. Let y k :=λx k for all k. Then

$$\begin{aligned} \sum_{k=1}^n \alpha_k y_k = \lambda\sum_{k=1}^n \alpha_k x_k = \lambda x = y \end{aligned}$$

and

$$\begin{aligned} \sum_{k=1}^n\alpha_k\delta^\ast_{A_k}(y_k) = \lambda\sum_{k=1}^n\alpha _kg_k(x_k) = \lambda g(x) = h(y). \end{aligned}$$

By the definition of the convex hull, this means that f(y)≤h(y). Combining this with (A.4) gives

$$\begin{aligned} f = h = \delta^\ast_A. \end{aligned}$$

The properties of \(\operatorname {dom}\delta^{\ast}_{A}\), in particular (A.1), then follow upon observing that

$$\begin{aligned} \operatorname {dom}g=\sigma_i(\operatorname {dom}h)=\sigma_i\bigl(\operatorname {dom}\delta^\ast_{A}\bigr). \end{aligned}$$

 □

The paper concludes with the proof of Lemma 2.

Proof of Lemma 2

For each t, since \(\mathcal{K}_{t}\) is a cone, the support function of \(-\mathcal{K}_{t}\) is

$$\begin{aligned} \delta^\ast_{-\mathcal{K}_t}(x) = \begin{cases} 0 &\mbox{if } x\cdot y \le0 \mbox{ for all } y\in-\mathcal{K}_t\cr \infty&\mbox{otherwise} \end{cases} = \begin{cases} 0 &\mbox{if } x\in\mathcal{K}^\ast_t,\cr \infty&\mbox{otherwise}. \end{cases} \end{aligned}$$
(A.5)

Thus \(\operatorname {dom}\delta^{\ast}_{-\mathcal{K}_{t}}=\mathcal{K}_{t}^{\ast}\), and so \(\operatorname {dom}\delta^{\ast}_{-\mathcal{K}_{t}}\) is compactly i-generated.

For any t we have \(U^{a}_{t}=\delta^{\ast}_{\mathbb{R}^{d}}\) on \(\varOmega \setminus\mathcal{E}_{t}\), together with

$$\begin{aligned} U^a_t(y) = \delta^\ast_{\{-\xi_t\}-\mathcal{K}_t}(y) = \delta^\ast_{\{ -\xi_t\}}(y) + \delta^\ast_{-\mathcal{K}_t}(y) = -y\cdot\xi_t + \delta ^\ast_{-\mathcal{K}_t}(y) \end{aligned}$$

for \(y\in\mathbb{R}^{d}\) on \(\mathcal{E}_{t}\) [23, p. 113]. Similarly,

$$\begin{aligned} V^a_t = \delta^\ast_{-\mathcal{W}^a_t-\mathcal{K}_t} = \delta^\ast _{-\mathcal{W}^a_t} + \delta^\ast_{-\mathcal{K}_t} = W^a_t + \delta^\ast _{-\mathcal{K}_t}. \end{aligned}$$

Equalities (5.8) and (5.9) then follow from (2.2) and (A.5).

We now turn to claims (b) and (c). Note first that the sets \(\mathcal {U}^{a}_{t}\), \(\mathcal{V}^{a}_{t}\), \(\mathcal{W}^{a}_{t}\) and \(\mathcal{Z}^{a}_{t}\) are non-empty for all t. This is easy to check by taking the trivial superhedging strategy for the seller defined by (5.5) and following the backward induction argument in the proof of Proposition 3.

We show below by backward induction that \(\operatorname {dom}Z^{a}_{t}\) is compactly i-generated on \(\mathcal{E}^{\ast}_{t}\). While doing so we will establish claims (b) and (c) for all t. At time T, using \(Z^{a}_{T}=U^{a}_{T}\) and (4.3), the set \(\operatorname {dom}Z^{a}_{T} = \mathcal{K}_{T}^{\ast}\) is compactly i-generated on \(\mathcal{E}^{\ast}_{T}=\mathcal{E}_{T}\), while \(Z^{a}_{T}=\delta^{\ast}_{\mathbb{R}^{d}}\) on \(\varOmega\setminus\mathcal {E}^{\ast}_{T}\). This establishes claim (b) for t=T since \(\mathcal{E}^{\ast}_{T+1}=\emptyset\).

At any time t<T, suppose that \(\operatorname {dom}Z^{a}_{t+1}\) is compactly i-generated on \(\mathcal{E}^{\ast}_{t+1}\). For any μΩ t there are now two possibilities:

  • If \(\mu\subseteq\mathcal{E}^{\ast}_{t+1}\), then Lemma 3 applies to the sets \(\{-\mathcal {Z}^{a\nu}_{t+1}:\nu\in \operatorname {succ}\mu\}\) since

    $$\begin{aligned} \bigcap_{\nu\in \operatorname {succ}\mu}\mathcal{Z}^{a\nu}_{t+1} = \mathcal {W}^{a\mu}_t \neq\emptyset; \end{aligned}$$

    this immediately gives claim (c). Moreover, the compact i-generation of \(\operatorname {dom}W^{a\mu}_{t}\) in combination with

    $$\begin{aligned} \operatorname {dom}V^{a\mu}_t = \operatorname {dom}W^{a\mu}_t \cap\mathcal{K}^{\ast\mu}_t \end{aligned}$$

    shows that \(\operatorname {dom}V^{a\mu}_{t}\) is also compactly i-generated. There are now two possibilities:

    • If \(\mu\subseteq\mathcal{E}_{t}\), then Lemma 3 applies to the sets \(-\mathcal {U}^{a\mu}_{t}\) and \(-\mathcal{V}^{a\mu}_{t}\). This gives claim (b)(i) after noting that

      $$\begin{aligned} \operatorname {dom}Z^{a\mu}_t = \operatorname {conv}\bigl(\operatorname {dom}V^{a\mu}_t \cup\mathcal{K}^{\ast\mu }_t\bigr)=\mathcal{K}^{\ast\mu}_t \end{aligned}$$

      by (A.1).

    • If \(\mu\nsubseteq\mathcal{E}_{t}\), then \(Z^{a\mu}_{t}=V^{a\mu}_{t}\) by Remark 6, which gives claim (b)(iii).

  • If \(\mu\nsubseteq\mathcal{E}^{\ast}_{t+1}\), then \(Z^{a\mu}_{t}=U^{a\mu }_{t}\) by Remark 6. There are again two possibilities:

    • If \(\mu\subseteq\mathcal{E}_{t}\), then (5.8) gives \(\operatorname {dom}Z^{a\mu}_{t}=\mathcal {K}^{\ast\mu}_{t}\). This is claim (b)(ii).

    • If \(\mu\nsubseteq\mathcal{E}_{t}\), then (5.8) immediately gives claim (b)(iv).

In summary, we have shown that \(\operatorname {dom}Z^{a}_{t}\) is compactly i-generated whenever

$$\begin{aligned} \mu\subseteq\bigl[\mathcal{E}^\ast_{t+1}\cap \mathcal{E}_t\bigr] \cup\bigl[\mathcal {E}^\ast_{t+1} \setminus\mathcal{E}_t\bigr] \cup\bigl[\mathcal{E}_t \setminus \mathcal{E}^\ast_{t+1}\bigr] = \mathcal{E}^\ast_t. \end{aligned}$$

This concludes the inductive step, and completes the proof of Lemma 2. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roux, A., Zastawniak, T. American and Bermudan Options in Currency Markets with Proportional Transaction Costs. Acta Appl Math 141, 187–225 (2016). https://doi.org/10.1007/s10440-015-0010-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-015-0010-9

Keywords

Mathematics Subject Classification

Navigation