Skip to main content
Log in

Rolling Manifolds of Different Dimensions

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

If (M,g) and \((\hat{M},\hat{g})\) are two smooth connected complete oriented Riemannian manifolds of dimensions n and \(\hat{n}\) respectively, we model the rolling of (M,g) onto \((\hat{M},\hat{g})\) as a driftless control affine systems describing two possible constraints of motion: the first rolling motion (Σ) NS captures the no-spinning condition only and the second rolling motion (Σ) R corresponds to rolling without spinning nor slipping. Two distributions of dimensions \((n + \hat{n})\) and n are then associated to the rolling motions (Σ) NS and (Σ) R respectively. This generalizes the rolling problems considered in Chitour and Kokkonen (Rolling manifolds and controllability: the 3D case, 2012) where both manifolds had the same dimension. The controllability issue is then addressed for both (Σ) NS and (Σ) R and completely solved for (Σ) NS . As regards to (Σ) R , basic properties for the reachable sets are provided as well as the complete study of the case \((n,\hat{n})=(3,2)\) and some sufficient conditions for non-controllability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Agrachev, A., Sachkov, Y.: An intrinsic approach to the control of rolling bodies. In: Proceedings of the CDC, Phoenix, vol. I, pp. 431–435 (1999)

    Google Scholar 

  2. Agrachev, A., Sachkov, Y.: Control Theory from the Geometric Viewpoint. Encyclopaedia of Mathematical Sciences, vol. 87. Control Theory and Optimization, II. Springer, Berlin (2004)

    MATH  Google Scholar 

  3. Alouges, F., Chitour, Y., Long, R.: A motion planning algorithm for the rolling-body problem. IEEE Trans. Robot. 26(5), 827–836 (2010)

    Article  Google Scholar 

  4. Bryant, R., Hsu, L.: Rigidity of integral curves of rank 2 distributions. Invent. Math. 114(2), 435–461 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chelouah, A., Chitour, Y.: On the controllability and trajectories generation of rolling surfaces. Forum Math. 15, 727–758 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chitour, Y., Godoy Molina, M., Kokkonen, P.: The rolling problem: overview and challenges (2013). arXiv:1301.6370

  7. Chitour, Y., Godoy Molina, M., Kokkonen, P.: Symmetries of the rolling model (2013). arXiv:1301.2579

  8. Chitour, Y., Kokkonen, P.: Rolling manifolds: intrinsic formulation and controllability. Preprint (2011). arXiv:1011.2925v2

  9. Chitour, Y., Kokkonen, P.: Rolling manifolds and controllability: the 3D case. Submitted (2012)

  10. Jean, F.: Control of Nonholonomic Systems: From Sub-Riemannian Geometry to Motion Planning. Springer, Berlin (2014)

    Google Scholar 

  11. Jurdjevic, V.: Geometric Control Theory. Cambridge Studies in Advanced Mathematics, vol. 52. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  12. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I. Wiley-Interscience, New York (1996)

    Google Scholar 

  13. Kokkonen, P.: A characterization of isometries between Riemannian manifolds by using development along geodesic triangles. Arch. Math. 48(3), 207–231 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kokkonen, P.: Étude du modèle des variétés roulantes et de sa commandabilité. Ph.D. Thesis (2012). http://tel.archives-ouvertes.fr/tel-00764158

  15. Marigo, A., Bicchi, A.: Rolling bodies with regular surface: controllability theory and applications. IEEE Trans. Autom. Control 45(9), 1586–1599 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Marigo, A., Bicchi, A.: Planning motions of polyhedral parts by rolling, algorithmic foundations of robotics. Algorithmica 26(3–4), 560–576 (2000)

    MATH  MathSciNet  Google Scholar 

  17. Molina, M., Grong, E., Markina, I., Leite, F.: An intrinsic formulation of the problem of rolling manifolds. J. Dyn. Control Syst. 18(2), 181–214 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sakai, T.: Riemannian Geometry. Translations of Mathematical Monographs, vol. 149. Am. Math. Soc., Providence (1996)

    MATH  Google Scholar 

  19. Sharpe, R.W.: Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program. Graduate Texts in Mathematics, vol. 166. Springer, New York (1997)

    MATH  Google Scholar 

  20. Vilms, J.: Totally geodesic maps. J. Differ. Geom. 4, 73–79 (1970)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author would like to thank the Lebanese National Council for Scientific Research (CNRS) and Lebanese University for their financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yacine Chitour.

Additional information

This research was partially supported by the iCODE institute, research project of the Idex Paris-Saclay.

Appendix

Appendix

In this section we briefly show how one writes the control system Σ (R) in local orthonormal frames.

Let (F i )1≤in and \((\hat{F}_{j})_{1\leq j\leq\hat{n}}\) be local oriented orthonormal frames on M and \(\hat{M}\) respectively and let \(q_{0}=(x_{0},\hat{x}_{0};A_{0})\in Q\) such that x 0, \(\hat{x}_{0}\) belong to the domains of definition V and \(\hat{V}\) of the frames. Let \(q(t)=(\gamma(t),\hat{\gamma}(t);A(t))\), t∈[0,1], be a curve in Q so that γV and \(\hat{\gamma}\subset\hat{V}\). For every t∈[0,1], define the unique element \(\mathcal{R}(t)\) in \(\mathrm{\mathit{SO}}(n,\hat{n})\) verifying

$$\bigl(A(t)F_1|_{\gamma(t)},\dots,A(t)F_n|_{\gamma(t)} \bigr) = (\hat{F}_1|_{\hat{\gamma}(t)},\dots,\hat{F}_{\hat {n}}|_{\hat{\gamma}(t)} )\mathcal{R}(t) $$

Define Christoffel symbols \(\varGamma\in T^{*}_{x} M\otimes\mathfrak {so}(n)\) and \(\hat{\varGamma}\in T^{*}_{\hat{x}} \hat{M}\otimes \mathfrak{so}(\hat{n})\) by

$$\varGamma(X)_i^l=g(\nabla_X F_i, F_l),\quad \quad \hat{\varGamma}(\hat{X})_j^k= \hat{g}(\hat{\nabla}_{\hat{X}} \hat {F}_j, \hat{F}_k), $$

with 1≤i,kn, \(1\leq j,k\leq\hat{n}\) and XT x M, \(\hat{X}\in T_{\hat{x}}\hat{M}\).

There are unique measurable functions \(u^{i}:[0,1]\to\mathbb{R}\), 1≤in, such that, for a.e. t∈[0,1],

$$\dot{\gamma}(t)= (F_1|_{\gamma(t)},\dots,F_n|_{\gamma(t)} )\left ( \begin{array}{c}u^1(t)\\ \vdots\\ u^n(t) \end{array} \right ). $$

As one can easily verify, the conditions of no-slip (7) and no-spin (6) translate for \((\hat{\gamma}(t),\mathcal{R}(t))\in\hat{M}\times \mathrm{\mathit{SO}}(n)\) precisely to

$$\begin{aligned} & \mbox{(no-slip)}\quad \dot{\hat{\gamma}}(t)= (\hat {F}_1|_{\hat{\gamma}(t)}, \dots,\hat{F}_{\hat{n}}|_{\hat{\gamma }(t)} )\mathcal{R}(t)\left ( \begin{array}{c}u^1(t)\\ \vdots\\ u^n(t) \end{array} \right ), \\ &\mbox{(no-spin)}\quad \dot{\mathcal{R}}(t)=\mathcal{R}(t)\varGamma \bigl( \dot{\gamma}(t) \bigr)-\hat{\varGamma} \bigl(\dot{\hat{\gamma}}(t) \bigr) \mathcal{R}(t), \end{aligned}$$

for a.e. t∈[0,1]. Moreover, the latter no-spin condition can also be written as

$$\dot{\mathcal{R}}(t)=\sum_{i=1}^n u^i(t) \Biggl(\mathcal{R}(t)\varGamma (F_i|_{\gamma(t)})- \sum_{j=1}^{\hat{n}} \mathcal{R}_{ji}(t) \hat {\varGamma}(\hat{F}_j|_{\hat{\gamma}(t)})\mathcal{R}(t) \Biggr), $$

for a.e. t∈[0,1], where \(\mathcal{R}_{ji}(t)\) is the element at j-th row, i-th column of \(\mathcal{R}(t)\). From this local form, one clearly sees that the rolling system Σ R is a driftless control affine system (see [2, 11] for more details on control systems).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortada, A., Kokkonen, P. & Chitour, Y. Rolling Manifolds of Different Dimensions. Acta Appl Math 139, 105–131 (2015). https://doi.org/10.1007/s10440-014-9972-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9972-2

Keywords

Navigation