Skip to main content
Log in

An Explicit Formula for the Nonstationary Diffracted Wave Scattered on a NN-Wedge

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We consider two dimensional nonstationary scattering of plane waves by a NN-wedge. We prove the existence and uniqueness of a solution to the corresponding mixed problem and we give an explicit formula for the solution. Also the Limiting Amplitude Principle is proved and a rate of convergence to the limiting amplitude is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Babich, V.M., Lyalinov, M.A., Grikurov, V.E.: Diffraction Theory: The Sommerfeld-Malyuzhinets Technique. Alpha Science International (2007)

  2. Bernard, J.M.L.: Diffraction by a metallic wedge covered by a dielectric material. Wave Motion 9, 543–561 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bernard, J.M.L.: On the time domain scattering by a passive classical frequency dependent wedge-shaped region in a lossy dispersive medium. Ann. Telecommun. 49(11–12), 673–683 (1994)

    Google Scholar 

  4. Bernard, J.M.L., Pelosi, G., Manara, G., Freni, A.: Time domain scattering by an impedance wedge for skew incidence. In: Proceedings Conference ICEAA, pp. 11–14 (1991)

    Google Scholar 

  5. Bernard, J.M.L.: Progresses on the diffraction by a wedge: transient solution for line source illumination, single face contribution to scattered field, and new consequence of reciprocity on the spectral function. Rev. Tech. Thomson 25(4), 1209–1220 (1993)

    MathSciNet  Google Scholar 

  6. Borovikov, V.A., Kinber, V.Y.: Geometrical Theory of Diffraction. The Institution of Electrical Engineers, London (1994)

    Book  MATH  Google Scholar 

  7. Bouche, D., Molinet, F., Mittra, R.: Asymptotic Methods in Electromagnetics. Springer, Berlin (1995)

    Google Scholar 

  8. Castro, L.P., Kapanadze, D.: Exterior wedge diffraction problems with Dirichlet, Neumann and impedance boundary conditions. Acta Appl. Math. 110(1), 289–311 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Castro, L.P., Kapanadze, D.: Wave diffraction by a 270 degrees wedge sector with Dirichlet, Neumann and impedance boundary conditions. Proc. A. Razmadze Math. Inst. 01(155), 96–99 (2011)

    MathSciNet  Google Scholar 

  10. Choque, A., Karlovich, Y., Merzon, A., Zhevandrov, P.: On the convergence of the amplitude of the diffracted nonstationary wave in scattering by wedges. Russ. J. Math. Phys. 19(3), 373–384 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Clemmow, P.C.: The Plane Wave Spectrum Representation of Electromagnetic Fields. Pergamon, Oxford (1966)

    Google Scholar 

  12. Duduchava, R., Tsaava, M.: Mixed boundary value problems for the Helmholtz equation in arbitrary 2D-sectors. Georgian Math. J. 20(3), 439–467 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Felsen, L.B.: Diffraction of the pulsed field from an arbitrarily oriented electric or magnetic dipole by a perfectly conducting wedge. SIAM J. Appl. Math. 26(2), 306–312 (1974)

    Article  Google Scholar 

  14. Hewett, D.P., Ockendon, J.R., Allwright, D.J.: Switching on a two-dimensional time-harmonic scalar wave in the presence of a diffracting edge. Wave Motion 48(3), 197–213 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Keller, J., Blank, A.: Diffraction and reflection of pulses by wedges and corners. Commun. Pure Appl. Math. 4(1), 75–95 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  16. Komech, A.I., Mauser, N.J., Merzon, A.E.: On Sommerfeld representation and uniqueness in scattering by wedges. Math. Methods Appl. Sci. 28, 147–183 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Komech, A.I., Merzon, A.E.: Limiting amplitude principle in the scattering by wedges. Math. Methods Appl. Sci. 29, 1147–1185 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Komech, A.I., Merzon, A.E., De la Paz Mendez, J.E.: On justifcation of Sobolev’s formula for diffraction by wedge. http://arxiv.org/submit/0988200

  19. Komech, A., Merzon, A., Zhevandrov, P.: A method of complex characteristics for elliptic problems in angles and its applications. Transl. Am. Math. Soc. 206(2), 125–159 (2002)

    MathSciNet  Google Scholar 

  20. Komech, A.I., Merzon, A.E.: Relation between Cauchy data for the scattering by a wedge. Russ. J. Math. Phys. 14(3), 279–303 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Komech, A.I.: Linear partial differential equations with constant coefficients. In: Egorov Yu, E., Komech, A.I., Shubin, M.A. (eds.) Elements of the Modern Theory of Partial Differential Equations, pp. 127–260. Springer, Berlin (1999)

    Google Scholar 

  22. Malyuzhinets, G.D.: Excitation, reflection and emission of the surface waves on a wedge with given impedances of the sides. Dokl. Akad. Nauk SSSR 121(3), 436–439 (1958)

    MathSciNet  Google Scholar 

  23. Malyuzhinets, G.D.: Inversion formula for the Sommerfeld integral. Sov. Phys. Dokl. 3, 52–56 (1958)

    Google Scholar 

  24. Meister, E., Penzel, F., Speck, F.O., Teixeira, F.S.: Some interior and exterior boundary-value problems for the Helmholtz equations in a quadrant. Proc. R. Soc. Edinb. A 123(2), 275–294 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. Meister, E., Speck, F.O., Teixeira, F.S.: Wiener-Hopf-Hankel operators for some wedge diffraction problems with mixed boundary conditions. J. Integral Equ. Appl. 4(2), 229–255 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Merzon, A., De la Paz Mendez, J.E.: DN-Scattering of a plane wave by wedges. Math. Methods Appl. Sci. 34(15), 1843–1872 (2011). http://onlinelibrary.wiley.com/doi/10.1002/mma.1484/abstract

    Article  MATH  MathSciNet  Google Scholar 

  27. Merzon, A.E., Speck, F.O., Villalba, T.J.: On the weak solution of the Neumann problem for the 2D Helmholtz equation in a convex cone and H s regularity. Math. Methods Appl. Sci. 34(1), 24–43 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Oberhettinger, F.: Diffraction of waves by a wedge. Commun. Pure Appl. Math. 7(3), 551–563 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  29. Oberhettinger, F.: On the diffraction and reflection of waves and pulses by wedges and corners. J. Res. Natl. Inst. Stan. 61(2) (1958)

  30. Petrashen, C.I., Nikolaev, V.G., Kouzov, D.P.: On the series method in the theory of diffraction waves by polygonal regions. Nauch. Zap. LGU 246(5), 5–70 (1958) (in Russian)

    Google Scholar 

  31. Rottbrand, K.: Exact solution for time-dependent diffraction of plane waves by semi-infinite soft/hard wedges and half-planes. Preprint, 1984, Technical University Darmstadt (1998)

  32. Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  33. Sobolev, S.L.: Theory of Diffraction of Plane Waves. Proc. of Seis. Inst., vol. 41. Russian Academy of Science, Leningrad (1934)

    Google Scholar 

  34. Sobolev, S.L.: General theory of diffraction of waves on Riemann surfaces. Tr. Fiz.-Mat. Inst. Steklova 9, 39–105 (1935) (Russian) (English translation: Sobolev S.L.: General theory of diffraction of waves on Riemann surfaces, in: Selected Works of S.L. Sobolev, I, Springer, New York, pp. 201–262 (2006))

    Google Scholar 

  35. Sobolev, S.L.: On the problem of diffraction of plane waves. In: Frank, F., Mises, R. (eds.) Differential and Integral Equations of Mathematical Physics, pp. 605–616. ONTI, Leningrad (1937). (in Russian)

    Google Scholar 

  36. Sommerfeld, A.: Mathematische Theorie der Diffraction. Math. Ann. 47, 317–341 (1896)

    Article  MATH  MathSciNet  Google Scholar 

  37. Merzon, A.E., Zhevandrov, P.N.: On the Neumann problem for the Helmholtz equation in a plane angle. Math. Methods Appl. Sci. 23(16), 1401–1446 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work is supported by Promep (México) via “Proyecto de redes”, and CONACyT (México). Also authors express the profound gratitude to professors A. Komech, P. Zhevandrov and L. Castro for fruitful discussions and to the doctor E. Tsvid for the help in preparation for the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoli Merzon.

Appendices

Appendix 1

Lemma 11.1

The function H N (β), defined by (11), has the following properties

  1. (i)

    H N (−β+)=−H N (β), for any \(\beta\in \mathbb{C}\).

  2. (ii)

    H N (β+2)=H N (β), for any \(\beta\in \mathbb{C}\).

Proof

It follows directly from (11). □

Lemma 11.2

The function \(\widehat{u}_{s}\) given in (20) satisfies “stationary” NN-problem (19).

Proof

It is easy to check that \(f_{1}(\rho,\theta,\omega) := - \widehat{g}(\omega) e^{i\rho\omega\cos(\theta-\alpha)}\) satisfies system (19). Therefore by (20), to prove (19) for \(\widehat{u}_{s}\) it suffices to prove that

$$\begin{aligned} f_2(\rho,\theta,\omega) := \int _{\mathcal{C}} e^{-\rho\omega\sinh\beta} H_N(\beta+i\theta)\,\mathrm{d}\beta \end{aligned}$$
(91)

satisfies for any ρ>0

$$ \begin{cases} (\Delta+ \omega^2)\ f_2(\rho,\theta,\omega) = 0,&\theta\in[\phi ,2\pi] \\ \frac{\partial}{\partial y_2} f_2(\rho,\theta,\omega) = 0,&\theta = 2\pi\\ \frac{\partial}{\partial\mathbf{n}_2}f_2(\rho,\theta,\omega) = 0,&\theta= \phi \end{cases} $$
(92)

The Helmholtz equation in (92) follows by differentiation of the integral (91) after the change of variable ββ′−, since (Δ+ω 2)e ρωsinh(β)=0. Moreover, the integral in (91) converges absolutely after the differentiation for any \(\omega\in\mathbb{C}^{+}\) by (21), the condition \(\omega\in\mathbb{C}^{+}\) and (11).

Let us prove that f 2 satisfies the second equality of (92). Since \(\frac{\partial}{\partial y_{2} } |_{\theta=2\pi}=\frac{1}{\rho }\cdot\frac{\partial}{\partial\theta} |_{\theta=2\pi}\) it suffices to prove that

$$ \left.\frac{\partial}{\partial\theta}\, f_2(\rho,\theta ,\omega) \right|_{\theta=2\pi} = 0. $$
(93)

Since \(\frac{\partial}{\partial\theta} = i\, \frac{\mathrm{d}}{\mathrm {d}\beta}\) and the integral \(\int_{\mathcal{C}} e^{-\rho\omega\sinh\beta}\frac {\partial}{\partial\theta} H_{N}(\beta+i\theta) \,\mathrm{d} \beta \) converges uniformly with respect to θ (by (21), \(\omega \in\mathbb{C}^{+}\) and (11)) to prove (93) it suffices to prove that

$$ \int_{\mathcal{C}}e^{-\rho\omega\sinh\beta }\frac{\mathrm{d}}{\mathrm{d}\beta} H_N(\beta+2i\pi)\,\mathrm{d}\beta=0. $$
(94)

The function \(e^{-\rho\omega\sinh\beta}\frac{\mathrm{d} }{\mathrm{d}\beta} H_{N}(\beta+2i\pi)\) is invariant with respect to \(\mathcal{S}(\beta)=-\beta-3i\pi\), for any \(\beta\in\mathcal {C}\). It follows from Lemma 11.1, i) and the fact that \(\frac{\mathrm{d} }{\mathrm{d}\beta}\, H_{N}(\beta+2i\pi)\) is invariant with respect to \(\mathcal{S}(\beta)\) for any \(\beta\in\mathcal{C}\). Hence (94) holds by the symmetry of \(\mathcal{C}\) given in (21) with respect to \(-i\frac{3\pi}{2}\), see Fig. 4.

Let us prove that f 2 satisfies the third equality of (92). Since (91), \(\frac{\partial}{\partial\mathbf{n}_{2} } |_{\theta=\phi} = -\frac{1}{\rho}\cdot\frac{\partial}{\partial \theta} |_{\theta=\phi}\), \(\frac{\partial}{\partial\theta} = i\, \frac{\mathrm{d}}{\mathrm {d}\beta}\), and the fact that the integral \(\int_{\mathcal{C}} e^{-\rho\omega\sinh\beta}\frac {\partial}{\partial\theta} H_{N}(\beta+i\theta) \,\mathrm{d} \beta \) converges uniformly with respect to θ (by (21), \(\omega \in\mathbb{C}^{+}\) and (11)), it suffices to prove that \(\int_{\mathcal{C}} e^{-\rho\omega\sinh\beta} \frac {\mathrm{d}\ }{\mathrm{d}\beta} H_{N}(\beta+i\phi) \,\mathrm{d} \beta= 0\). Integrating by parts and using that for any \(\beta\in\mathcal{C}\), H N (β+) is a bounded function and e ρωsinhβ⟶0 when \(\vert\operatorname{Re} \beta\vert \rightarrow+\infty\) we obtain \(\int_{\mathcal{C}} e^{-\rho\omega\sinh\beta} \frac {\mathrm{d}}{\mathrm{d}\beta} H_{N}(\beta+i\phi) \,\mathrm{d} \beta = \rho\omega\int_{\mathcal{C}} e^{-\rho\omega\sinh\beta} \cosh \beta\, H_{N}(\beta+i\phi)\, \mathrm{d}\beta\). The last integral is equal to 0, because of the invariance of the integrand with respect to −β−3, for any \(\beta\in \mathcal{C}\) and by the symmetry of \(\mathcal{C}\) with respect to \(-i\frac{3\pi}{2}\). □

Appendix 2

Proof of Lemma 4.3

(i) The analytic continuation of \(\widehat{g}(\omega_{1})\) to \(\mathbb{C}^{+}\) and (37) follow from the Paley-Wiener type theorem for convex cones ([21, Theorem I.5.2]) since suppf⊂[0,∞) by (2). The estimate (38) follows from (2) since \(\omega_{0}\in \mathbb{R}\).

(ii) \(f'\in C_{0}^{\infty}(\mathbb{R})\) since supp(f′) is a compact set by (2) and \(f\in C^{\infty}(\mathbb{R})\). Hence existence of the analytic continuation of \(\widehat{g}_{1}(\omega_{1})\) to \(\mathbb{C}\) and (40) follow from the Classic Paley-Wiener Theorem [32]. It is easy to check that \(\widehat{g}_{1}(\omega)=(\omega-\omega _{0})\widehat{g}(\omega)\), for any \(\omega\in\mathbb{C}^{+}\) by (34), (35) and the Analytic Continuation Principle. This implies the first identity in (41). Hence, the second identity in (41) follows from (37) and (40). The statement (42) follows from the first identity in (41) and (39). □

Appendix 3

Definition 13.1

For a function h(s), we denote the jump of h(s), at a point \(s=s^{*}\in\mathbb{R}\) as \(\mathfrak{J}(h,s^{*}) := \lim_{\varepsilon\rightarrow0+} h(s^{*} + i \varepsilon) - \lim_{\varepsilon\rightarrow0+} h(s^{*} - i \varepsilon)\), if the limits exist.

Lemma 13.2

Let \(f\in\mathrm{C}_{0}(\mathbb{R})\) and for |ε|≤1 let \(F(\varepsilon) := \frac{1}{2i\pi}\int_{-\infty }^{\infty} f(s) \coth(qs+i\varepsilon)\,\mathrm{d}s\). Then there exist the limits lim ε→0+ F(ε), lim ε→0− F(ε) and \(\mathfrak{J}(F,0) = -\frac{1}{q}\ f(0)\).

Proof

It follows by the Sokhotsky-Plemelj theorem. □

Lemma 13.3

Let u r , u d be the functions given by (17) and (10), respectively. Then

$$\begin{aligned} \mathfrak{J} \biggl( \frac{\partial ^{(k)}u_r}{\partial\theta^k}, \theta_l \biggr) = - \mathfrak{J} \biggl( \frac{\partial^{(k)}u_d}{\partial \theta^k}, \theta_l \biggr), \quad k\in\mathbb{N}_0, \ l=1,2. \end{aligned}$$
(95)

Proof

We consider the case θ=θ 1. The case θ=θ 2 is analyzed similarly.

First we find \(\mathfrak{J} (\frac{\partial ^{(k)}u_{r}}{\partial\theta^{k}}, \theta_{1} )\). From (17) it follows that

$$\begin{aligned} \mathfrak{J} \biggl(\frac{\partial ^{(k)}u_r}{\partial\theta^k}, \theta_1 \biggr) = -\frac{\partial^{(k)}}{\partial\theta^k} u_{r,1}(\rho,\theta_1,t), \quad k\in\mathbb{N}_0. \end{aligned}$$
(96)

Using polar coordinates y=(ρcosθ,ρsinθ) in u r,1 and making the change of variable β=−i(θθ 1) we obtain \(u_{r,1}(\rho,\theta_{1},t) = e^{-i\omega_{0}(t-\rho\cos(\theta-\theta_{1}))} f(t-\rho\cos (\theta-\theta_{1})) = A(\beta,\rho,t)\), where

$$\begin{aligned} A(\beta,\rho,t) :=& e^{-i\omega_0(t-\rho\cosh\beta )} f(t-\rho\cosh\beta). \end{aligned}$$
(97)

Then \(\frac{\partial^{(k)} }{\partial\theta^{k}} u_{r,1}(\rho,\theta,t) = (-i)^{k} \frac{\partial^{(k)} }{\partial\beta^{k}} A(\beta,\rho ,t)\), \(k\in\mathbb{N}_{0}\). Hence by (96) we obtain

$$\begin{aligned} \mathfrak{J} \biggl(\frac{\partial ^{(k)}u_r}{\partial\theta^k}, \theta_1 \biggr) = -(-i)^k \frac{\partial^{(k)}}{\partial\beta^k} A(0,\rho,t),\quad k\in \mathbb{N}_0. \end{aligned}$$
(98)

Now we find \(\mathfrak{J} (\frac{\partial^{(k)} u_{d}}{\partial\theta^{k}} ,\theta_{1} )\). From (18) and (11) it follows that Z N (ρ,θ,t)=coth[q(β+ 1)]+coth[q(β+ 2)]−coth[q(β+−2)]−coth[q(β+)]. Since function coth[q(β+ 1)] is discontinuous in θ=θ 1, then Z N (ρ,θ,t) is also discontinuous in θ=θ 1. Hence from (51) we have that

$$\begin{aligned} \mathfrak{J} \biggl(\frac{\partial^{(k)} u_d}{\partial\theta^k} ,\theta_1 \biggr) = \mathfrak{J} \biggl(\frac{\partial^{(k)} u_1}{\partial \theta^k} ,\theta_1 \biggr), \end{aligned}$$
(99)

where \(u_{1}(\rho,\theta,t) = -\frac{q}{2i\pi} \int_{-\infty}^{+\infty} A(\beta ,\rho,t) \coth[ q(\beta+ i\theta- i\theta_{1} ) ] \,\mathrm{d}\beta\) and A(β,ρ) is given by (97). Using \(\frac{\partial }{\partial\theta} \coth[ q(\beta+ i\theta- i\theta_{1} ) ] = i\frac{\partial }{\partial\beta} \coth[ q(\beta+ i\theta- i\theta_{1} ) ]\), integrating by parts k times (for k=0 we do not integrate \(\frac {\partial^{(k)} u_{1}}{\partial\theta^{k}}\)), and using that by (2) the integration is realized on a compact interval, we obtain \(\frac{\partial^{(k)} }{\partial\theta^{k}} u_{1}(\rho,\theta,t) = (-1)^{k-1}\frac{i^{k} q}{2i\pi} \int_{-\infty }^{+\infty} \frac{\partial^{(k)} }{\partial\beta^{k}} A(\beta,\rho,t) \cdot \coth[ q(\beta+ i\theta- i\theta_{1}) ] \,\mathrm{d}\beta\). Applying Lemma 13.2 with \(f(\beta)=(-1)^{k-1} i^{k} q \frac {\partial^{(k)} }{\partial\beta^{k}} A(\beta,\rho,t)\) we obtain

$$\begin{aligned} \mathfrak{J} \biggl(\frac{\partial^{(k)} u_1}{\partial \theta^k} , \theta_1 \biggr) = (-i)^k\, \frac{\partial^{(k)} }{\partial\theta^k} A(0,\rho,t). \end{aligned}$$
(100)

Therefore (95) follows from (99), (100) and (98). □

Appendix 4

Lemma 14.1

The function \([\frac{t}{t+\sqrt{t^{2} - \rho^{2}}} ]^{m}\) admits the following asymptotic behavior

$$\begin{aligned} \biggl[\frac{t}{t+\sqrt{t^2 - \rho^2}} \biggr]^m =& \biggl( \frac{1}{2} \biggr)^m + m \biggl(\frac{1}{2} \biggr)^{m-1} \frac{1}{8}\cdot\frac{\rho^2}{t^2} + O \biggl( \frac{1}{t^4} \biggr), \quad t\rightarrow\infty. \end{aligned}$$
(101)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarrete, A.E., Merzon, A. An Explicit Formula for the Nonstationary Diffracted Wave Scattered on a NN-Wedge. Acta Appl Math 136, 119–145 (2015). https://doi.org/10.1007/s10440-014-9943-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9943-7

Keywords

Navigation