Skip to main content
Log in

Controllability and Time Optimal Control for Low Reynolds Numbers Swimmers

Acta Applicandae Mathematicae Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The aim of this paper is to tackle the self-propelling at low Reynolds number by using tools coming from control theory. More precisely we first address the controllability problem: “Given two arbitrary positions, does it exist “controls” such that the body can swim from one position to another, with null initial and final deformations?”. We consider a spherical object surrounded by a viscous incompressible fluid filling the remaining part of the three dimensional space. The object is undergoing radial and axi-symmetric deformations in order to propel itself in the fluid. Since we assume that the motion takes place at low Reynolds number, the fluid is governed by the Stokes equations. In this case, the governing equations can be reduced to a finite dimensional control system. By combining perturbation arguments and Lie brackets computations, we establish the controllability property. Finally we study the time optimal control problem for a simplified system. We derive the necessary optimality conditions by using the Pontryagin maximum principle. In several particular cases we are able to compute the explicit form of the time optimal control and to investigate the variation of optimal solutions with respect to the number of inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agrachev, A.A., Sachkov, Y.L.: Control Theory from the Geometric Viewpoint Encyclopaedia of Mathematical Sciences, vol. 87. Springer, Berlin (2004). Control Theory and Optimization, II

    MATH  Google Scholar 

  2. Alouges, F., Desimone, A., Heltai, L.: Numerical strategies for stroke optimization of axisymmetric microswimmers. Math. Models Methods Appl. Sci. 21, 361–387 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alouges, F., DeSimone, A., Lefebvre, A.: Optimal strokes for low Reynolds number swimmers: an example. J. Nonlinear Sci. 18, 277–302 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bello, J., Fernandez-Cara, E., Lemoine, J., Simon, J.: The differentiability of the drag with respect to the variations of a Lipschitz domain in a Navier-Stokes flow. SIAM J. Control Optim. 35, 626–640 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cesari, L.: Optimization—Theory and Applications. Applications of Mathematics, vol. 17. Springer, New York (1983). Problems with ordinary differential equations

    Book  MATH  Google Scholar 

  6. Childress, S.: Mechanics of Swimming and Flying. Cambridge Studies in Mathematical Biology, vol. 2. Cambridge University Press, Cambridge (1981)

    Book  MATH  Google Scholar 

  7. Coron, J.-M.: Control and Nonlinearity. Mathematical Surveys and Monographs, vol. 136. Am. Math. Soc., Providence (2007)

    MATH  Google Scholar 

  8. Dal Maso, G., DeSimone, A., Morandotti, M.: An existence and uniqueness result for the motion of self-propelled microswimmers. SIAM J. Math. Anal. 43, 1345–1368 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Springer Tracts in Natural Philosophy, vol. 38. Springer, New York (1994). Linearized steady problems

    Book  MATH  Google Scholar 

  10. Hartl, R.F., Sethi, S.P., Vickson, R.G.: A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev. 37, 181–218 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Henrot, A., Pierre, M.: Variation et Optimisation de Formes. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 48. Springer, Berlin (2005). Une analyse géométrique [A geometric analysis]

    MATH  Google Scholar 

  12. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  13. Jurdjevic, V.: Geometric Control Theory. Cambridge Studies in Advanced Mathematics, vol. 52. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  14. Lighthill, J.: Mathematical Biofluiddynamics Regional Conference Series in Applied Mathematics, vol. 17. Society for Industrial and Applied Mathematics, Philadelphia (1975). Based on the lecture course delivered to the Mathematical Biofluiddynamics Research Conference of the National Science Foundation held from July 16–20, 1973 at Rensselaer Polytechnic Institute, Troy, New York

    Book  MATH  Google Scholar 

  15. Lighthill, M.J.: On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Math. 5, 109–118 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  16. Michelin, S., Lauga, E.: Efficiency optimization and symmetry-breaking in a model of ciliary locomotion. Phys. Fluids 22, 111901 (2010)

    Article  Google Scholar 

  17. Murat, F., Simon, J.: Sur le contrôle par un domaine géométrique. Report of L.A. 189 76015, Université Paris VI (1976)

  18. Purcell, E.M.: Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977)

    Article  Google Scholar 

  19. San Martín, J., Takahashi, T., Tucsnak, M.: A control theoretic approach to the swimming of microscopic organisms. Q. Appl. Math. 65, 405–424 (2007)

    MATH  Google Scholar 

  20. Shapere, A., Wilczek, F.: Efficiencies of self-propulsion at low Reynolds number. J. Fluid Mech. 198, 587–599 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Taylor, G.: Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. Ser. A 209, 447–461 (1951)

    Article  MATH  Google Scholar 

  22. Trélat, E.: Contrôle Optimal. Mathématiques Concrètes [Concrete Mathematics]. Vuibert, Paris (2005). Théorie & applications [Theory and applications]

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Scheid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohéac, J., Scheid, JF. & Tucsnak, M. Controllability and Time Optimal Control for Low Reynolds Numbers Swimmers. Acta Appl Math 123, 175–200 (2013). https://doi.org/10.1007/s10440-012-9760-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-012-9760-9

Keywords

Mathematics Subject Classification

Navigation