Skip to main content
Log in

Paralic Confinement: Models and Simulations

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

This paper deals with the mathematical modelling of confinement of paralic ecosystems. It is based on the recent paper (Frénod and Goubert in Ecol. Model. 200(1–2):139–148, 2007) that presents a modelling procedure in order to compute the confinement field of a lagoon.

Here, we improve the existing model in order to account for tide oscillations in any kind of geometry such as non-rectangular lagoons with a non-flat bottom. The new model, that relies on PDEs rather than ODEs, is then implemented thanks to the finite element method. Numerical results confirm the feasibility of confinement studies thanks to the introduced model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. More realistic numerical choices (such as a Poiseuille profile) have been done, but do not influence the solution properties.

  2. For the sake of clarity, the corresponding computations are detailed in the Appendix.

References

  1. Angot, P., Bruneau, C.H., Fabrie, P.: A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81(4), 497–520 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barnes: A critical appraisal of the application of Guélorget and Pertuisot’s concept of the paralic ecosystem and confinement to macrotidal Europe. Estuar. Coast. Shelf Sci. 38, 41–48 (1994)

    Article  Google Scholar 

  3. Debenay, J.-P., Perthuisot, J.-P., Colleuil, B.: Expression numérique du confinement par les peuplements de foraminifères. app. aux domaines paral. actuels afri. w. C. R. Acad. Sci., Paris, série II 316(2), 1823–1830 (1993)

    Google Scholar 

  4. Frénod, E., Goubert, E.: A first step towards modelling confinement of paralic ecosystems. Ecol. Model. 200(1–2), 139–148 (2007)

    Article  Google Scholar 

  5. Guélorget, O., Frisoni, G.F., Perthuisot, J.-P.: La zonation biologique des milieux lagunaires : définition d’une échelle de confinement dans le domaine paralique méditérranéen. J. Rech. Océanogr. 8, 15–36 (1983)

    Google Scholar 

  6. Guélorget, O., Gaujous, D., Louis, M., Perthuisot, J.-P.: Macrobenthofauna of lagoons in guadaloupean mangroves (lesser antilles): role and expression of confinement. J. Coast. Res. 6, 611–626 (1990)

    Google Scholar 

  7. Guélorget, O., Perthuisot, J.-P.: Le confinement, paramètre essentiel de la dynamique biologique du domaine paralique. Sci. Géol., Bull. 14, 25–34 (1983)

    Google Scholar 

  8. Guélorget, O., Perthuisot, J.-P.: Le domaine paralique. Expressions géologiques biologique, et économique du confinement. Presse de l’école normale supérieure 16-1983, 45 rue d’Ulm, Paris, 1983

  9. Hecht, F., Pironneau, O., Le Hyaric, A.: FreeFem++ manual. (2004)

    Google Scholar 

  10. Ibrahim, A., Guélorget, O., Frisoni, G.G., Rouchy, J.M., Martin, A., Perthuisot, J.-P.: Expressions hydrochimiques, biologiques et sédimentologiques des gradients de confinement dans la lagune de Guemsah (Golfe de Suez, Egypte). Oceanol. Acta 8, 303–320 (1985)

    Google Scholar 

  11. Redois, F., Debenay, J.-P.: Influence du confinement sur la répartition des foraminifères benthiques : exemples de l’estran d’une ria mésotidale de Bretagne méridionale. Rev. Paléobiol. 15(1), 243–260 (1996)

    Google Scholar 

  12. Tagliapietra, D., Sigovini, M., Ghirardini, V.: A review of terms and definitions to categorise estuaries, lagoons and associated environments. Mar. Freshw. Res. 60(6), 497–509 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Rousseau.

Appendix: Equation for the Confinement

Appendix: Equation for the Confinement

In this appendix we explain why, for any time t>0 and given a sufficiently large time T, the solution g t =g t (τ,x,y) of

$$ \left \{ \begin{array}{ll} \frac { {\partial {g_{t}}}}{ {\partial \tau }}(\tau,x,y)+\vec{v}(t-T+\tau,x,y)\cdot\nabla g_{t}(\tau ,x,y)=0,\\\quad\forall0<\tau<T,\forall(x,y)\in \Omega ,\\g_{t}(\tau,x,y)=T-\tau,\quad\forall0<\tau<T,\forall(x,y)\in\overline{\Gamma },\\g_{t}(0,x,y)=T,\quad\forall(x,y)\in \Omega ,\end{array} \right .$$
(65)

is such that g t (T,x,y) is the value of the instantaneous confinement (see Definition 2) at instant t∈ℝ+ and position (x,y)∈Ω. It is indeed the case since the value g t (τ,x,y) of g t at time τ and in position (x,y)∈Ω is either the value of the initial data (i.e. T) or the value of g t on \(\overline{\Gamma }\) at a former time. For \((x_{0},y_{0})\in\overline{\Gamma}\), we consider the characteristic \((\tilde{X}(\tau,x_{0},y_{0},0),\tilde{Y}(\tau,x_{0},y_{0},0))\) which is such that its origin

$$ \bigl(\tilde{X}(0,x_{0},y_{0},0),\tilde{Y}(0,x_{0},y_{0},0) \bigr)=(x_{0},y_{0})\in\overline{\Gamma },$$
(66)

passing by (x,y). This means that, for a given τ =τ (t,x,y), we have

$$ \bigl(\tilde{X}\bigl(\tau^*,x_{0},y_{0},0\bigr),\tilde{Y}\bigl(\tau^*,x_{0},y_{0},0\bigr)\bigr)=(x,y)$$
(67)

and that it is solution to

$$ \left \{ \begin{array}{lr} \tfrac {\partial {\tilde{X}}}{\partial \tau }(\tau,x,y,s)=v_{1}(\tau-T+t,\tilde{X}(\tau;x,y,s),\tilde{Y}(\tau;x,y,s)),\\[0.2cm] \tfrac {\partial {\tilde{Y}}}{\partial \tau }(\tau,x,y,s)=v_{2}(\tau-T+t,\tilde{X}(\tau;x,y,s),\tilde{Y}(\tau;x,y,s)).\end{array} \right .$$
(68)

Notice that τ =τ (t,x,y) is the time for the characteristic to go from the border \(\overline{\Gamma }\) to (x,y) when (x,y) is reached at time t. Hence it is, by definition, the value of the instantaneous confinement in (x,y) at time t.

Beside this, reasoning like in Sect. 2.3, we get that g remains constant along the characteristics \((\tilde{X}, \tilde{Y})\) meaning

(69)

i.e. the instantaneous confinement value in position (x,y) and time t. In order to get the ultimate equality in (69), we used (65).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frénod, E., Rousseau, A. Paralic Confinement: Models and Simulations. Acta Appl Math 123, 1–19 (2013). https://doi.org/10.1007/s10440-012-9706-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-012-9706-2

Keywords

Navigation