Skip to main content

Advertisement

Log in

A Finite Element Model of the Foot/Ankle to Evaluate Injury Risk in Various Postures

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The foot/ankle complex is frequently injured in many types of debilitating events, such as car crashes. Numerical models used to assess injury risk are typically minimally validated and do not account for ankle posture variations that frequently occur during these events. The purpose of this study was to evaluate a finite element model of the foot and ankle accounting for these positional changes. A model was constructed from computed tomography scans of a male cadaveric lower leg and was evaluated by comparing simulated bone positions and strain responses to experimental results at five postures in which fractures are commonly reported. The bone positions showed agreement typically within 6° or less in all anatomical directions, and strain matching was consistent with the range of errors observed in similar studies (typically within 50% of the average strains). Fracture thresholds and locations in each posture were also estimated to be similar to those reported in the literature (ranging from 6.3 kN in the neutral posture to 3.9 kN in combined eversion and external rotation). The least vulnerable posture was neutral, and all other postures had lower fracture thresholds, indicating that examination of the fracture threshold of the lower limb in the neutral posture alone may be an underestimation. This work presents an important step forward in the modeling of lower limb injury risk in altered ankle postures. Potential clinical applications of the model include the development of postural guidelines to minimize injury, as well as the evaluation of new protective systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Bandak, F., R. Tannous, and T. Toridis. On the development of an osseo-ligamentous finite element model of the human ankle joint. Int. J. Solids Struct. 38:1681–1697, 2001.

    Article  Google Scholar 

  2. Burkhart, T. A., D. M. Andrews, and C. E. Dunning. Failure characteristics of the isolated distal radius in response to dynamic impact loading. J. Orthop. Res. 30:885–892, 2012.

    Article  PubMed  Google Scholar 

  3. Burkhart, T. A., D. M. Andrews, and C. E. Dunning. Finite element modeling mesh quality, energy balance and validation methods: a review with recommendations associated with the modeling of bone tissue. J. Biomech. 46:1477–1488, 2013.

    Article  PubMed  Google Scholar 

  4. Burkhart, T. A., C. E. Quenneville, C. E. Dunning, and D. M. Andrews. Development and validation of a distal radius finite element model to simulate impact loading indicative of a forward fall. Proc. Inst. Mech. Eng. Part H 228(3):258–271, 2014. doi:10.1177/0954411914522781.

    Article  Google Scholar 

  5. Burstein, A. H., D. T. Reilly, and M. Martens. Aging of bone tissue: mechanical properties. J. Bone Jt. Surg. 58:82–86, 1976.

    Article  CAS  Google Scholar 

  6. Castillo, R. C., E. J. MacKenzie, S. T. Wegener, and M. J. Bosse. Prevalence of chronic pain seven years following limb threatening lower extremity trauma. Pain 124:321–329, 2006.

    Article  PubMed  Google Scholar 

  7. Cattaneo, P., M. Dalstra, and B. Melsen. The finite element method: a tool to study orthodontic tooth movement. J. Dent. Res. 84:428–433, 2005.

    Article  CAS  PubMed  Google Scholar 

  8. Cheung, J. T.-M., K.-N. An, and M. Zhang. Consequences of partial and total plantar fascia release: a finite element study. Foot Ankle Int. 27:125–132, 2006.

    Article  PubMed  Google Scholar 

  9. Crandall, J. R., D. Bose, J. Forman, C. Untaroiu, C. Arregui-Dalmases, C. G. Shaw, et al. Human surrogates for injury biomechanics research. Clin. Anat. 24:362–371, 2011.

    Article  CAS  PubMed  Google Scholar 

  10. Dong, L., F. Zhu, X. Jin, M. Suresh, B. Jiang, G. Sevagan, et al. Blast effect on the lower extremities and its mitigation: a computational study. J. Mech. Behav. Biomed. Mater. 28:111–124, 2013.

    Article  PubMed  Google Scholar 

  11. Erdemir, A., M. L. Viveiros, J. S. Ulbrecht, and P. R. Cavanagh. An inverse finite-element model of heel-pad indentation. J. Biomech. 39:1279–1286, 2006.

    Article  PubMed  Google Scholar 

  12. Essex-Lopresti, P. The mechanism, reduction technique, and results in fractures of the os calcis. Br. J. Surg. 39:395–419, 1952.

    Article  CAS  PubMed  Google Scholar 

  13. Funk, J. R., J. R. Crandall, L. J. Tourret, C. B. Macmahon, C. R. Bass, J. T. Patrie, et al. The axial injury tolerance of the human foot/ankle complex and the effect of Achilles tension. J. Biomech. Eng. 124:750–757, 2002.

    Article  PubMed  Google Scholar 

  14. Funk, J., G. Hall, J. Crandall, and W. Pilkey. Linear and quasi-linear viscoelastic characterization of ankle ligaments. J. Biomech. Eng. 122:15–22, 2000.

    Article  CAS  PubMed  Google Scholar 

  15. Funk, J. R., R. W. Rudd, J. R. Kerrigan, and J. R. Crandall. The line of action in the tibia during axial compression of the leg. J. Biomech. 40(10):2277–2282, 2007.

    Article  PubMed  Google Scholar 

  16. Funk, J. R., S. C. Srinivasan, and J. R. Crandall. Snowboarder’s talus fractures experimentally produced by eversion and dorsiflexion. Am. J. Sports Med. 31:921–928, 2003.

    Article  PubMed  Google Scholar 

  17. Gabler, L. F., M. B. Panzer, and R. S. Salzar. High-rate mechanical properties of human heel pad for simulation of a blast loading condition. Proceedings, IRCOBI Conference on the Biomechanics of Impact, Berlin, Germany 2014.

  18. Golanó, P., J. Vega, P. A. J. de Leeuw, F. Malagelada, M. C. Manzanares, V. Götzens, et al. Anatomy of the ankle ligaments: a pictorial essay. Knee Surg. Sports Traumatol. Arthrosc. 18:557–569, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gray, H. Gray’s Anatomy: With Original Illustrations by Henry Carter. London: Arcturus Publishing, 2009.

    Google Scholar 

  20. Hofstede, D. J., M. J. Ritt, and K. E. Bos. Tarsal autografts for reconstruction of the scapholunate interosseous ligament: a biomechanical study. J. Hand Surg. 24:968–976, 1999.

    Article  CAS  Google Scholar 

  21. Hutton, W., and M. Dhanendran. A study of the distribution of load under the normal foot during walking. Int. Orthop. 3:153–157, 1979.

    CAS  PubMed  Google Scholar 

  22. Imai, K., I. Ohnishi, M. Bessho, and K. Nakamura. Nonlinear finite element model predicts vertebral bone strength and fracture site. Spine 31:1789–1794, 2006.

    Article  PubMed  Google Scholar 

  23. Imhauser, C. W. The development and evaluation of a 3-dimensional, image-based, patient-specific, dynamic model of the hindfoot. PhD Dissertation, Drexel University, 2004.

  24. Iwamoto, M., K. Miki, and E. Tanaka. Ankle skeletal injury predictions using anisotropic inelastic constitutive model of cortical bone taking into account damage evolution. Stapp Car Crash J. 49:133, 2005.

    PubMed  Google Scholar 

  25. Kim, Y. S., H. H. Choi, Y. N. Cho, and Y. J. Park. Numerical investigations of interactions between the knee-thigh-hip complex with vehicle interior structures. Stapp Car Crash J. 49:85, 2005.

    PubMed  Google Scholar 

  26. Kitaoka, H. B., Z. P. Luo, E. S. Growney, L. J. Berglund, and K.-N. An. Material properties of the plantar aponeurosis. Foot Ankle Int. 15:557–560, 1994.

    Article  CAS  PubMed  Google Scholar 

  27. Klopp, G., J. Crandall, G. Hall, W. Pilkey, S. Hurwitz, and S. Kuppa. Mechanisms of injury and injury criteria for the human foot and ankle in dynamic axial impacts to the foot. Proceedings of the 1997 International IRCOBI Conference on the Biomechanics of Impact, 1997.

  28. Kura, H., Z.-P. Luo, H. B. Kitaoka, W. P. Smutz, and K.-N. An. Mechanical behavior of the Lisfranc and dorsal cuneometatarsal ligaments: in vitro biomechanical study. J. Orthop. Trauma 15:107–110, 2001.

    Article  CAS  PubMed  Google Scholar 

  29. Linde, F., I. Hvid, and B. Pongsoipetch. Energy absorptive properties of human trabecular bone specimens during axial compression. J. Orthop. Res. 7:432–439, 1989.

    Article  CAS  PubMed  Google Scholar 

  30. MacKenzie, E. J., R. C. Castillo, A. S. Jones, M. J. Bosse, J. F. Kellam, A. N. Pollak, et al. Health-care costs associated with amputation or reconstruction of a limb-threatening injury. J. Bone Jt. Surg. 89:1685–1692, 2007.

    Google Scholar 

  31. Manoli, A., P. Prasad, and R. S. Levine. Foot and ankle severity scale (FASS). Foot Ankle Int. 18:598–602, 1997.

    Article  PubMed  Google Scholar 

  32. Mkandawire, C., W. Ledoux, B. Sangeorzan, and R. Ching. Hierarchical cluster analysis of area and length of foot and ankle ligaments. Proceedings of the 25th Annual Meeting of the American Society of Biomechanics, 2001, pp. 8–11.

  33. Mkandawire, C., W. R. Ledoux, B. J. Sangeorzan, and R. P. Ching. Foot and ankle ligament morphometry. J. Rehabil. Res. Dev. 42:809, 2005.

    Article  PubMed  Google Scholar 

  34. Morris, A., P. Thomas, A. M. Taylor, and W. A. Wallace. Mechanisms of fractures in ankle and hind-foot injuries to front seat car occupants: an in-depth accident data analysis. Proceedings of the 41st Stapp Car Crash Conference, 13–14 November 1997, Orlando, FL (Sae Technical Paper 973328), 1997.

  35. Neuert, M. A. C., R. L. Austman, and C. E. Dunning. The comparison of density-elastic modulus equations for the distal ulna at multiple forearm positions: a finite element study. Acta Bioeng. Biomech. 15(3):37–43, 2013.

    PubMed  Google Scholar 

  36. Qian, S.-H., S.-R. Ge, and Q.-L. Wang. The frictional coefficient of bovine knee articular cartilage. J. Bionic Eng. 3:79–85, 2006.

    Article  Google Scholar 

  37. Quenneville, C. E., and C. E. Dunning. Development of a finite element model of the tibia for short-duration high-force axial impact loading. Comput. Methods Biomech. Biomed. Eng. 14:205–212, 2011.

    Article  Google Scholar 

  38. Ramasamy, A., S. D. Masouros, N. Newell, A. M. Hill, W. G. Proud, K. A. Brown, et al. In-vehicle extremity injuries from improvised explosive devices: current and future foci. Philos. Trans. R. Soc. B 366:160–170, 2011.

    Article  Google Scholar 

  39. Read, K. M., J. A. Kufera, P. C. Dischinger, T. J. Kerns, S. M. Ho, A. R. Burgess, et al. Life-altering outcomes after lower extremity injury sustained in motor vehicle crashes. J. Trauma Acute Care Surg. 57:815–823, 2004.

    Article  Google Scholar 

  40. Ritchie, R. O., M. J. Buehler, and P. Hansma. Plasticity and toughness in bone. Phys. Today 62:41–47, 2009.

    Article  CAS  Google Scholar 

  41. Rohen, J., C. Yokochi, and E. Lutjen-Drecoll. Color Atlas of Anatomy: Aphotographic Study of the Human Body. New York: Igaku-Shoin, 1992.

    Google Scholar 

  42. Rudd, R. W. Updated analysis of lower extremity injury risk in frontal crashes in the United States. 21st International Technical Conference on the Enhanced Safety of Vehicles, 2009.

  43. Sapuan, S., M. Osman, and Y. Nukman. State of the art of the concurrent engineering technique in the automotive industry. J. Eng. Des. 17:143–157, 2006.

    Article  Google Scholar 

  44. Shin, J., and C. D. Untaroiu. Biomechanical and Injury Response of Human Foot and Ankle Under Complex Loading. J. Biomech. Eng. 135:101008–101008, 2013.

    Article  PubMed  Google Scholar 

  45. Shin, J., N. Yue, and C. D. Untaroiu. A finite element model of the foot and ankle for automotive impact applications. Ann. Biomed. Eng. 40:2519–2531, 2012.

    Article  PubMed  Google Scholar 

  46. Shunmugasamy, V. C., N. Gupta, and P. G. Coelho. High strain rate response of rabbit femur bones. J. Biomech. 43:3044–3050, 2010.

    Article  PubMed  Google Scholar 

  47. Siegler, S., J. Chen, and C. Schneck. The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints—part I: kinematics. J. Biomech. Eng. 110:364–373, 1988.

    Article  CAS  PubMed  Google Scholar 

  48. Smith, P. N., and B. H. Ziran. Fractures of the talus. Oper. Tech. Orthopaed. 9(3):229–238, 1999.

    Article  Google Scholar 

  49. Smolen, C., and C. E. Quenneville. The effect of ankle posture on the load pathway through the hindfoot. Proc. Inst. Mech. Eng. Part H 230:1024–1035, 2016.

    Article  Google Scholar 

  50. Solan, M. C., C. T. Moorman, R. G. Miyamoto, L. E. Jasper, and S. M. Belkoff. Ligamentous restraints of the second tarsometatarsal joint: a biomechanical evaluation. Foot Ankle Int. 22:637–641, 2001.

    Article  CAS  PubMed  Google Scholar 

  51. Souzanchi, M. F., P. Palacio-Mancheno, Y. A. Borisov, L. Cardoso, and S. C. Cowin. Microarchitecture and bone quality in the human calcaneus: local variations of fabric anisotropy. J. Bone Miner. Res. 27:2562–2572, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Staebler, M. P., D. C. Moore, E. Akelman, A.-P. C. Weiss, P. D. Fadale, and J. J. Crisco. “The effect of wrist guards on bone strain in the distal forearm. Am. J. Sports Med. 27:500–506, 1999.

    Article  CAS  PubMed  Google Scholar 

  53. Tannous, R. E., F. A. Bandak, T. G. Toridis, and R. H. Eppinger. A three-dimensional finite element model of the human ankle: development and preliminary application to axial impulsive loading. SAE Technical Paper 962427:0148–7191, 1996.

    Google Scholar 

  54. Untaroiu, C., K. Darvish, J. Crandall, B. Deng, and W. Jenne-Tai. A finite element model of the lower limb for simulating pedestrian impacts. Stapp Car Crash J. 49:157, 2005.

    PubMed  Google Scholar 

  55. Untaroiu, C., K. Darvish, J. Crandall, B. Deng, and J.-T. Wang. Characterization of the lower limb soft tissues in pedestrian finite element models. 19th International technical conference on the Enhanced Safety of Vehicles, 2005, pp. 124–131.

  56. Valle, L., and M. Ray. Development and Validation of a 50th Percentile Male Human Femur: Attachment A. Worcester, MA: National Highway Traffic Safety Administration, Worcester Polytechnic Institute, 2005.

    Google Scholar 

  57. von Meyer, G. H. The classic: the architecture of the trabecular bone (tenth contribution on the mechanics of the human skeletal framework). Clin. Orthop. Relat. Res. 469:3079–3084, 2011.

    Article  Google Scholar 

  58. Yoganandan, N., F. A. Pintar, M. Boynton, P. Begeman, P. Prasad, S. M. Kuppa, et al. Dynamic axial tolerance of the human foot-ankle complex. SAE Technical Paper 962426, 1996.

Download references

Acknowledgments

This research was funded by the National Sciences and Engineering Research Council of Canada, the Ontario Graduate Scholarship Program and McMaster University. We would like to thank Dr. Harjeet Gandhi for his assistance during the dissection of the specimen and Dr. Tom Chow for his help in performing the CT scans and setting up the test frame in the CT scanner. We would also like to thank Avery Chakravarty, Alberto Martinez and Dongho (Brian) Shin for their assistance in identifying ligament insertion sites on the model.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl E. Quenneville.

Additional information

Associate Editor Joel D. Stitzel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolen, C., Quenneville, C.E. A Finite Element Model of the Foot/Ankle to Evaluate Injury Risk in Various Postures. Ann Biomed Eng 45, 1993–2008 (2017). https://doi.org/10.1007/s10439-017-1844-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1844-2

Keywords

Navigation