Skip to main content
Log in

Can Recovery Foot Placement Affect Older Adults’ Slip-Fall Severity?

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Following a slip occurred in the overground walking, a fall can be classified into two exclusive categories: feet-forward fall or split fall. The purposes of this study were to investigate whether the placement of the recovery foot would determine the slip types, the likelihood of fall, and the severity associated with each fall. The fall severity was estimated based on the impact velocity of body segments or trunk orientation upon fall arrest. One hundred ninety-five participants experienced a novel, unannounced slip while walking on a 7-m walkway. Kinematics of a full-body marker set was collected by a motion capture system which was synchronized with the force plates and loadcell. The results showed that the recovery foot landing position relative to the projected center of mass position at the recovery foot touchdown determined the slip type by 90.8%. Feet-forward slips led to significantly lower rate of falls than did split slips (47.6 vs. 67.8%, p < 0.01). Yet, feet-forward falls were much more dangerous because they were associated with significantly greater estimated maximum hip impact velocity (p < 0.001) and trunk backward leaning angle (p < 0.001) in comparison to split falls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Bastian, A. J. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr. Opin. Neurobiol. 16:645–649, 2006.

    Article  CAS  PubMed  Google Scholar 

  2. Bhatt, T., J. D. Wening, and Y. C. Pai. Influence of gait speed on stability: recovery from anterior slips and compensatory stepping. Gait Posture 21:146–156, 2005.

    Article  CAS  PubMed  Google Scholar 

  3. Bhatt, T., J. D. Wening, and Y. C. Pai. Adaptive control of gait stability in reducing slip-related backward loss of balance. Exp. Brain Res. 170:61–73, 2006.

    Article  CAS  PubMed  Google Scholar 

  4. Cham, R., and M. S. Redfern. Changes in gait when anticipating slippery floors. Gait Posture 15:159–171, 2002.

    Article  PubMed  Google Scholar 

  5. Cody, D. D., F. J. Hou, G. W. Divine, and D. P. Fyhrie. Femoral structure and stiffness in patients with femoral neck fracture. J. Orthop. Res. 18:443–448, 2000.

    Article  CAS  PubMed  Google Scholar 

  6. de Leva, P. Adjustments to Zatsiorsky–Seluyanov’s segment inertia parameters. J. Biomech. 29:1223–1230, 1996.

    Article  PubMed  Google Scholar 

  7. DeGoede, K. M., and J. A. Ashton-Miller. Fall arrest strategy affects peak hand impact force in a forward fall. J. Biomech. 35:843–848, 2002.

    Article  CAS  PubMed  Google Scholar 

  8. Donald, I. P., and C. J. Bulpitt. The prognosis of falls in elderly people living at home. Age Ageing 28:121–125, 1999.

    Article  CAS  PubMed  Google Scholar 

  9. Espy, D. D., F. Yang, T. Bhatt, and Y. C. Pai. Independent influence of gait speed and step length on stability and fall risk. Gait Posture 32:378–382, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gruben, K. G., and W. L. Boehm. Ankle torque control that shifts the center of pressure from heel to toe contributes non-zero sagittal plane angular momentum during human walking. J. Biomech. 47:1389–1394, 2014.

    Article  PubMed  Google Scholar 

  11. Hohne, A., C. Stark, G. P. Bruggemann, and A. Arampatzis. Effects of reduced plantar cutaneous afferent feedback on locomotor adjustments in dynamic stability during perturbed walking. J. Biomech. 44:2194–2200, 2011.

    Article  PubMed  Google Scholar 

  12. Hsiao, E. T., and S. N. Robinovitch. Elderly subjects’ ability to recover balance with a single backward step associates with body configuration at step contact. J. Gerontol. A 56:M42–M47, 2001.

    Article  CAS  Google Scholar 

  13. Hue, O., M. Simoneau, J. Marcotte, F. Berrigan, J. Dore, P. Marceau, S. Marceau, A. Tremblay, and N. Teasdale. Body weight is a strong predictor of postural stability. Gait Posture 26:32–38, 2007.

    Article  PubMed  Google Scholar 

  14. Jacobs, J., and F. Horak. Cortical control of postural responses. J. Neural Transm. 114:1339–1348, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jobges, M., G. Heuschkel, C. Pretzel, C. Illhardt, C. Renner, and H. Hummelsheim. Repetitive training of compensatory steps: a therapeutic approach for postural instability in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 75:1682–1687, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Keyak, J. H., H. B. Skinner, and J. A. Fleming. Effect of force direction on femoral fracture load for two types of loading conditions. J. Orthop. Res. 19:539–544, 2001.

    Article  CAS  PubMed  Google Scholar 

  17. Lockhart, T. E., J. L. Smith, and J. C. Woldstad. Effects of aging on the biomechanics of slips and falls. Hum. Factors 47:708–729, 2005.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mcilroy, W. E., and B. E. Maki. Changes in early automatic postural responses associated with the prior-planning and execution of a compensatory step. Brain Res. 631:203–211, 1993.

    Article  CAS  PubMed  Google Scholar 

  19. Mille, M. L., M. E. Johnson, K. M. Martinez, and M. W. Rogers. Age-dependent differences in lateral balance recovery through protective stepping. Clin. Biomech. 20:607–616, 2005.

    Article  Google Scholar 

  20. Moyer, B. E., M. S. Redfern, and R. Cham. Biomechanics of trailing leg response to slipping—evidence of interlimb and intralimb coordination. Gait Posture 29:565–570, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Norton, R., A. J. Campbell, T. LeeJoe, E. Robinson, and M. Butler. Circumstances of falls resulting in hip fractures among older people. J. Am. Geriatr. Soc. 45:1108–1112, 1997.

    Article  CAS  PubMed  Google Scholar 

  22. Pai, Y.-C., and J. L. Patton. Center of mass velocity-position predictions for balance control. J. Biomech. 30:347–354, 1997.

    Article  CAS  PubMed  Google Scholar 

  23. Pai, Y. C., M. W. Rogers, J. Patton, T. D. Cain, and T. A. Hanke. Static versus dynamic predictions of protective stepping following waist-pull perturbations in young and older adults. J. Biomech. 31:1111–1118, 1998.

    Article  CAS  PubMed  Google Scholar 

  24. Pai, Y. C., F. Yang, T. Bhatt, and E. Wang. Learning from laboratory-induced falling: long-term motor retention among older adults. Age 36:1367–1376, 2014.

    Article  Google Scholar 

  25. Patla, A. E., A. Adkin, and T. Ballard. Online steering: coordination and control of body center of mass, head and body reorientation. Exp. Brain Res. 129:629–634, 1999.

    Article  CAS  PubMed  Google Scholar 

  26. Redfern, M. S., R. Cham, K. Gielo-Perczak, R. Gronqvist, M. Hirvonen, H. Lanshammar, M. Marpet, C. Y. C. Pai, and C. Powers. Biomechanics of slips. Ergonomics 44:1138–1166, 2001.

    Article  CAS  PubMed  Google Scholar 

  27. Ren, J., A. Waclawczyk, D. Hartfield, S. C. Yu, X. Y. Kuang, H. R. Zhang, and H. Alamgir. Analysis of fall injuries by body mass index. South. Med. J. 107:294–300, 2014.

    Article  PubMed  Google Scholar 

  28. Riener, R., and T. Edrich. Identification of passive elastic joint moments in the lower extremities. J. Biomech. 32:539–544, 1999.

    Article  CAS  PubMed  Google Scholar 

  29. Robinovitch, S. N., L. Inkster, J. Maurer, and B. Warnick. Strategies for avoiding hip impact during sideways falls. J. Bone Miner. Res. 18:1267–1273, 2003.

    Article  PubMed  Google Scholar 

  30. Robinovitch, S. N., R. Brumer, and J. Maurer. Effect of the “squat protective response” on impact velocity during backward falls. J. Biomech. 37:1329–1337, 2004.

    Article  PubMed  Google Scholar 

  31. Sandler, R., and S. Robinovitch. An analysis of the effect of lower extremity strength on impact severity during a backward fall. J. Biomech. Eng. Trans. ASME 123:590–598, 2001.

    Article  CAS  Google Scholar 

  32. Schulz, B. W., J. A. Ashton-Miller, and N. B. Alexander. Compensatory stepping in response to waist pulls in balance-impaired and unimpaired women. Gait Posture 22:198–209, 2005.

    Article  PubMed  Google Scholar 

  33. Smeesters, C., W. C. Hayes, and T. A. McMahon. Determining fall direction and impact location for various disturbances and gait speeds using the articulated total body model. J. Biomech. Eng. Trans. ASME 129:393–399, 2007.

    Article  Google Scholar 

  34. Stevens, J. A., and E. D. Sogolow. Gender differences for non-fatal unintentional fall related injuries among older adults. Inj. Prev. 11:115–119, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang, P. F., M. H. Woollacott, and R. K. Y. Chong. Control of reactive balance adjustments in perturbed human walking: roles of proximal and distal postural muscle activity. Exp. Brain Res. 119:141–152, 1998.

    Article  CAS  PubMed  Google Scholar 

  36. van den Bogert, A. J., M. J. Pavol, and M. D. Grabiner. Response time is more important than walking speed for the ability of older adults to avoid a fall after a trip. J. Biomech. 35:199–205, 2002.

    Article  PubMed  Google Scholar 

  37. Winter, D. A., A. E. Patla, J. S. Frank, and S. E. Walt. Biomechanical walking pattern changes in the fit and healthy elderly. Phys. Ther. 70:340–347, 1990.

    Article  CAS  PubMed  Google Scholar 

  38. Woollacott, M. H., and P. F. Tang. Balance control during walking in the older adult: research and its implications. Phys. Ther. 77:646–660, 1997.

    Article  CAS  PubMed  Google Scholar 

  39. Yamaguchi, T., and K. Hokkirigawa. Experimental analysis of slip potential in Normal-style walking and Nanba-style walking. J. Biomech. Sci. Eng. 4:468–479, 2009.

    Article  Google Scholar 

  40. Yamaguchi, T., and K. Masani. Contribution of center of mass–center of pressure angle tangent to the required coefficient of friction in the sagittal plane during straight walking. Biotribology 5:16–22, 2016.

    Article  Google Scholar 

  41. Yang, F., and Y. C. Pai. Automatic recognition of falls in gait-slip training: harness load cell based criteria. J. Biomech. 44:2243–2249, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yang, F., T. Bhatt, and Y. C. Pai. Role of stability and limb support in recovery against a fall following a novel slip induced in different daily activities. J. Biomech. 42:1903–1908, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yang, F., D. Espy, and Y. C. Pai. Feasible stability region in the frontal plane during human gait. Ann. Biomed. Eng. 37:2606–2614, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yang, F., D. Espy, T. Bhatt, and Y. C. Pai. Two types of slip-induced falls among community dwelling older adults. J. Biomech. 45:1259–1264, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang, M. Z., F. Yang, E. Wang, and Y. C. Pai. Association between anthropometric factors and falls in community-dwelling older adults during a simulated slip while walking. J. Am. Geriatr. Soc. 62:1808–1810, 2014.

    Article  PubMed  Google Scholar 

  46. Zijlstra, G. A. R., J. C. M. van Haastregt, E. van Rossum, J. T. M. van Eijk, L. Yardley, and G. I. J. M. Kempen. Interventions to reduce fear of falling in community-living older people: a systematic review. J. Am. Geriatr. Soc. 55:603–615, 2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by NIH RO1-AG029616 and NIH R01-AG044364.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Chung Pai.

Additional information

Associate Editor Joel D. Stitzel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Liu, X., Lee, A. et al. Can Recovery Foot Placement Affect Older Adults’ Slip-Fall Severity?. Ann Biomed Eng 45, 1941–1948 (2017). https://doi.org/10.1007/s10439-017-1834-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1834-4

Keywords

Navigation