Skip to main content
Log in

Linear and Nonlinear Gait Features in Older Adults Walking on Inclined Surfaces at Different Speeds

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study evaluated linear and nonlinear gait features in healthy older adults walking on inclined surfaces at different speeds. Thirty-seven active older adults (experimental group) and fifty young adults (control group) walked on a treadmill at 100% and ±20% of their preferred walking speed for 4 min under horizontal (0%), upward (UP) (+8%), and downward (DOWN) (−8%) conditions. Linear gait variability was assessed using the average standard deviation of trunk acceleration between strides (VAR). Gait stability was assessed using the margin of stability (MoS). Nonlinear gait features were assessed by using the maximum Lyapunov exponent, as a measure of local dynamic stability (LDS), and sample entropy (SEn), as a measure of regularity. VAR increased for all conditions, but the interaction effects between treadmill inclination and age, and speed and age were higher for young adults. DOWN conditions showed the lowest stability in the medial–lateral MoS, but not in LDS. LDS was smaller in UP conditions. However, there were no effects of age for either MoS or LDS. The values of SEn decreased almost linearly from the DOWN to the UP conditions, with significant interaction effects of age for anterior–posterior SEn. The overall results supported the hypothesis that inclined surfaces modulate nonlinear gait features and alter linear gait variability, particularly in UP conditions, but there were no significant effects of age for active older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bauby, C. E., and A. D. Kuo. Active control of lateral balance in human walking. J. Biomech. 33:1433–1440, 2000.

    Article  CAS  PubMed  Google Scholar 

  2. Berg, W. P., H. M. Alessio, E. M. Mills, and C. Tong. Circumstances and consequences of falls in independent community-dwelling older adults. Age Ageing 26:261–268, 1997.

    Article  CAS  PubMed  Google Scholar 

  3. Bruijn, S. M., O. G. Meijer, P. J. Beek, and J. H. van Dieën. Assessing the stability of human locomotion: a review of current measures. J. R. Soc. Interface 10:20120999, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bruijn, S. M., J. H. van Dieën, O. G. Meijer, and P. J. Beek. Statistical precision and sensitivity of measures of dynamic gait stability. J. Neurosci. Methods 178:327–333, 2009.

    Article  PubMed  Google Scholar 

  5. Bruijn, S. M., J. H. van Dieën, O. G. Meijer, and P. J. Beek. Is slow walking more stable? J. Biomech. 42:1506–1512, 2009.

    Article  PubMed  Google Scholar 

  6. Costa, M., C.-K. Peng, A. L. Goldberger, and J. M. Hausdorr. Multiscale entropy analysis of human gait dynamics. Physica A 330:53–60, 2003.

    Article  Google Scholar 

  7. Daley, M. J., and W. L. Spinks. Exercise, mobility and aging. Sports Med. 29:1–12, 2000.

    Article  CAS  PubMed  Google Scholar 

  8. DeVita, P., and T. Hortobagyi. Age causes a redistribution of joint torques and powers during gait. J. Appl. Physiol. 88:1804–1811, 2000.

    CAS  PubMed  Google Scholar 

  9. Dingwell, J. B., J. P. Cusumano, P. R. Cavanagh, and D. Sternad. Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. J. Biomech. Eng. 123:27–32, 2001.

    Article  CAS  PubMed  Google Scholar 

  10. Dingwell, J. B., J. P. Cusumano, D. Sternad, and P. R. Cavanagh. Slower speeds in patients with diabetic neuropathy lead to improved local dynamic stability of continuous overground walking. J. Biomech. 33:1269–1277, 2000.

    Article  CAS  PubMed  Google Scholar 

  11. Dingwell, J. B., and L. C. Marin. Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. J. Biomech. 39:444–452, 2006.

    Article  PubMed  Google Scholar 

  12. Ferraro, R. A., G. Pinto-Zipp, S. Simpkins, and M. Clark. Effects of an inclined walking surface and balance abilities on spatiotemporal gait parameters of older adults. J. Geriatr. Phys. Ther. 8084:1, 2013.

    Google Scholar 

  13. Hak, L., H. Houdijk, P. J. Beek, and J. H. Van Dieën. Steps to take to enhance gait stability: the effect of stride frequency, stride length, and walking speed on local dynamic stability and margins of stability. PLoS ONE 8:e82842, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hak, L., H. Houdijk, F. Steenbrink, A. Mert, P. van der Wurff, P. J. Beek, and J. H. van Dieën. Speeding up or slowing down? Gait adaptations to preserve gait stability in response to balance perturbations. Gait Posture 36:260–264, 2012.

    Article  PubMed  Google Scholar 

  15. Hausdorff, J. M., D. A. Rios, and H. K. Edelberg. Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch. Phys. Med. Rehabil. 82:1050–1056, 2001.

    Article  CAS  PubMed  Google Scholar 

  16. Hof, A. L., M. G. J. Gazendam, and W. E. Sinke. The condition for dynamic stability. J. Biomech. 38:1–8, 2005.

    Article  CAS  PubMed  Google Scholar 

  17. Kang, H. G., and J. B. Dingwell. Separating the effects of age and walking speed on gait variability. Gait Posture 27:572–577, 2008.

    Article  PubMed  Google Scholar 

  18. Kang, H. G., and J. B. Dingwell. Effects of walking speed, strength and range of motion on gait stability in healthy older adults. J. Biomech. 41:2899–2905, 2008.

    Article  PubMed  Google Scholar 

  19. Kang, H. G., and J. B. Dingwell. Dynamic stability of superior vs. inferior segments during walking in young and older adults. Gait Posture 30:260–263, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kerrigan, D. C., L. W. Lee, J. J. Collins, P. O. Riley, and L. A. Lipsitz. Reduced hip extension during walking: healthy elderly and fallers versus young adults. Arch. Phys. Med. Rehabil. 82:26–30, 2001.

    Article  CAS  PubMed  Google Scholar 

  21. Leroux, A., J. Fung, and H. Barbeau. Postural adaptation to walking on inclined surfaces: I. Normal strategies. Gait Posture 15:64–74, 2002.

    Article  PubMed  Google Scholar 

  22. Lipsitz, L. A. Dynamics of stability: the physiologic basis of functional health and frailty. J. Gerontol. A 57:B115–B125, 2002.

    Article  Google Scholar 

  23. Lockhart, T. E., and J. Liu. Differentiating fall-prone and healthy adults using local dynamic stability. Ergonomics 51:1860–1872, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lockhart, T. E., J. C. Woldstad, and J. L. Smith. Effects of age-related gait changes on the biomechanics of slips and falls. Ergonomics 46:1136–1160, 2003.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Manor, B., M. D. Costa, K. Hu, E. Newton, O. Starobinets, H. G. Kang, C. K. Peng, V. Novak, and L. A. Lipsitz. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults. J. Appl. Physiol. 109:1786–1791, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Marigold, D. S., and A. E. Patla. Age-related changes in gait for multi-surface terrain. Gait Posture 27:689–696, 2008.

    Article  PubMed  Google Scholar 

  27. McIntosh, A. S., K. T. Beatty, L. N. Dwan, and D. R. Vickers. Gait dynamics on an inclined walkway. J. Biomech. 39:2491–2502, 2006.

    Article  PubMed  Google Scholar 

  28. Menz, H. B., S. R. Lord, and R. C. Fitzpatrick. Acceleration patterns of the head and pelvis when walking on level and irregular surfaces. Gait Posture 18:35–46, 2003.

    Article  PubMed  Google Scholar 

  29. Minetti, A. E., L. P. Ardigo, and F. Saibene. Mechanical determinants of gradient walking energetics in man. J. Physiol. 472:725–735, 1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Minetti, A. E., C. Moia, G. S. Roi, D. Susta, and G. Ferretti. Energy cost of walking and running at extreme uphill and downhill slopes. J. Appl. Physiol. 93:1039–1046, 2002.

    Article  PubMed  Google Scholar 

  31. Parijat, P., and T. E. Lockhart. Effects of moveable platform training in preventing slip-induced falls in older adults. Ann. Biomed. Eng. 40:1111–1121, 2012.

    Article  PubMed  Google Scholar 

  32. Prince, F., D. Winter, P. Stergiou, and S. Walt. Anticipatory control of upper body balance during human locomotion. Gait Posture 2:19–25, 1994.

    Article  Google Scholar 

  33. Ramdani, S., B. Seigle, J. Lagarde, F. Bouchara, and P. L. Bernard. On the use of sample entropy to analyze human postural sway data. Med. Eng. Phys. 31:1023–1031, 2009.

    Article  PubMed  Google Scholar 

  34. Americans with Disabilities Act homepage. Retrieved May 07, 2016, from https://www.ada.gov/.

  35. Reynard, F., and P. Terrier. Local dynamic stability of treadmill walking: intrasession and week-to-week repeatability. J. Biomech. 47:74–80, 2014.

    Article  PubMed  Google Scholar 

  36. Reynard, F., and P. Terrier. Role of visual input in the control of dynamic balance: variability and instability of gait in treadmill walking while blindfolded. Exp. Brain Res. 233:1031–1040, 2015.

    Article  PubMed  Google Scholar 

  37. Reynard, F., P. Vuadens, O. Deriaz, and P. Terrier. Could local dynamic stability serve as an early predictor of falls in patients with moderate neurological gait disorders? A reliability and comparison study in healthy individuals and in patients with paresis of the lower extremities. PLoS ONE 9:e100550, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Riva, F., E. Grimpampi, C. Mazzà, and R. Stagni. Are gait variability and stability measures influenced by directional changes? Biomed. Eng. 13:56, 2014.

    Google Scholar 

  39. Robinovitch, S. N., F. Feldman, Y. Yang, R. Schonnop, P. M. Leung, T. Sarraf, J. Sims-Gould, and M. Loughin. Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study. Lancet 381:47–54, 2013.

    Article  PubMed  Google Scholar 

  40. Rogers, H. L., R. L. Cromwell, and J. L. Grady. Adaptive changes in gait of older and younger adults as responses to challenges to dynamic balance. J. Aging Phys. Act. 16:85–96, 2008.

    Article  PubMed  Google Scholar 

  41. Scaglioni-Solano, P., and L. F. Aragón-Vargas. Age-related differences when walking downhill on different sloped terrains. Gait Posture 41:153–158, 2014.

    Article  PubMed  Google Scholar 

  42. Secretaria Nacional de Promoção dos Direitos da Pessoa com Deficiência. Retrieved May 07, 2016, from http://www.pessoacomdeficiencia.gov.br/app/.

  43. Shupert, C. L., and F. B. Horak. Adaptation of postural control in normal and pathologic aging: implications for fall prevention programs. J. Appl. Biomech. 15:64–74, 1999.

    Article  Google Scholar 

  44. Stergiou, N., and L. M. Decker. Human movement variability, nonlinear dynamics, and pathology: is there a connection? Hum. Mov. Sci. 30:869–888, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Terrier, P., and O. Dériaz. Non-linear dynamics of human locomotion: Effects of rhythmic auditory cueing on local dynamic stability. Front. Physiol. 4:1–13, 2013.

    Article  Google Scholar 

  46. Terrier, P., and F. Reynard. Effect of age on the variability and stability of gait: a cross-sectional treadmill study in healthy individuals between 20 and 69 years of age. Gait Posture 41:170–174, 2015.

    Article  PubMed  Google Scholar 

  47. Toebes, M. J. P., M. J. M. Hoozemans, R. Furrer, J. Dekker, and J. H. van Dieën. Associations between measures of gait stability, leg strength and fear of falling. Gait Posture 41:76–80, 2015.

    Article  PubMed  Google Scholar 

  48. Tulchin, K., M. Orendurff, and L. Karol. The effects of surface slope on multi-segment foot kinematics in healthy adults. Gait Posture 32:446–450, 2010.

    Article  PubMed  Google Scholar 

  49. van Emmerik, R. E. A., S. W. Ducharme, A. Amado, and J. Hamill. Comparing dynamical systems concepts and techniques for biomechanical analysis. J. Sport Heal. Sci. 2016. doi:10.1016/j.jshs.2016.01.013.

    Google Scholar 

  50. Zeni, J. A., J. G. Richards, and J. S. Higginson. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture 27:710–714, 2008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Brazilian governmental agencies: funding was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant No. 445567/2014-7), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Fundação de Amparo à Pesquisa do Estado de Goiás and Fundação de Amparo à Pesquisa do Estado de Minas Gerais.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Fraga Vieira.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, M.F., Rodrigues, F.B., de Sá e Souza, G.S. et al. Linear and Nonlinear Gait Features in Older Adults Walking on Inclined Surfaces at Different Speeds. Ann Biomed Eng 45, 1560–1571 (2017). https://doi.org/10.1007/s10439-017-1820-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1820-x

Keywords

Navigation