Skip to main content
Log in

Improved Measurement of Elastic Properties of Cells by Micropipette Aspiration and Its Application to Lymphocytes

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Mechanical deformability of cells is an important property for their function and development, as well as a useful marker of cell state. The classical technique of micropipette aspiration allows single-cell studies and we provide here a method to measure the two basic mechanical parameters, elastic modulus and Poisson’s ratio. The proposed method, developed from finite-element analysis of micropipette aspiration experiments, may be implemented in future technologies for the automated measurement of mechanical properties of cells, based on the micropipette aspiration technique or on the cell transit through flow constrictions. We applied this method to measure the elastic parameters of lymphocytes, in which the mechanical properties depend on their activation state. Additionally, we discuss in this work the accuracy of previous models to estimate the elastic modulus of cells, in particular the analytical model by Theret et al., widely used in the field. We show the necessity of using an improved model, taking into account the finite size of the cells, to obtain new insights that may remain hidden otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Alexandrov, V. M., and A. D. Pozharskii. Three-dimensional contact problems. Amsterdam: Kluwer, 2001.

    Book  Google Scholar 

  2. Alonso-Fernandez, P., and M. De la Fuente. Role of the immune system in aging and longevity. Curr. Aging Sci. 4:78–100, 2011.

    Article  CAS  PubMed  Google Scholar 

  3. Bao, G., and S. Suresh. Cell and molecular mechanics of biological materials. Nat. Mater. 2:715–725, 2003.

    Article  CAS  PubMed  Google Scholar 

  4. Bernal, A., L. M. Perez, B. De Lucas, N. S. Martin, A. Kadow-Romacker, G. Plaza, K. Raum, and B. G. Galvez. Low-intensity pulsed ultrasound improves the functional properties of cardiac mesoangioblasts. Stem Cell Rev. 11:852–865, 2015.

    Article  CAS  PubMed  Google Scholar 

  5. Boal, D. Mechanics of the Cell. Cambridge: Cambridge University Press, 2012.

    Book  Google Scholar 

  6. Butler, J. P., and S. M. Kelly. A model for cytoplasmic rheology consistent with magnetic twisting cytometry. Biorheology 35:193–209, 1998.

    Article  CAS  PubMed  Google Scholar 

  7. Cai, X., X. Xing, J. Cai, Q. Chen, S. Wu, and F. Huang. Connection between biomechanics and cytoskeleton structure of lymphocyte and Jurkat cells: an AFM study. Micron 41:257–262, 2010.

    Article  CAS  PubMed  Google Scholar 

  8. Daza, R., J. Cruces, M. Arroyo-Hernandez, N. Mari-Buye, M. De la Fuente, G. R. Plaza, M. Elices, J. Perez-Rigueiro, and G. V. Guinea. Topographical and mechanical characterization of living eukaryotic cells on opaque substrates: development of a general procedure and its application to the study of non-adherent lymphocytes. Phys. Biol. 12:026005, 2015.

    Article  PubMed  Google Scholar 

  9. Di Carlo, D. A mechanical biomarker of cell state in medicine. J. Lab. Autom. 17:32–42, 2012.

    Article  PubMed  Google Scholar 

  10. Discher, D. E., D. H. Boal, and S. K. Boey. Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophys. J. 75:1584–1597, 1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    Article  CAS  PubMed  Google Scholar 

  12. Evans, E. New membrane concept applied to analysis of fluid shear-deformed and micropipet-deformed red blood-cells. Biophys. J. 13:941–954, 1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Evans, E., and A. Yeung. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 56:151–160, 1989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Friedmann, A., A. Hoess, A. Cismak, and A. Heilmann. Investigation of cell-substrate interactions by focused ion beam preparation and scanning electron microscopy. Acta Biomater. 7:2499–2507, 2011.

    Article  CAS  PubMed  Google Scholar 

  15. Geissler, E., and A. M. Hecht. The poisson ration in polymer gels. 2. Macromolecules 14:185–188, 1981.

    Article  CAS  Google Scholar 

  16. Gossett, D. R., H. T. K. Tse, S. A. Lee, Y. Ying, A. G. Lindgren, O. O. Yang, J. Rao, A. T. Clark, and D. Di Carlo. Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc. Natl. Acad. Sci. USA 109:7630–7635, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guck, J., S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88:3689–3698, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Haase, K., and A. E. Pelling. Investigating cell mechanics with atomic force microscopy. J. R. Soc. Interface 12:20140970, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hochmuth, R. M. Micropipette aspiration of living cells. J. Biomech. 33:15–22, 2000.

    Article  CAS  PubMed  Google Scholar 

  20. Ip, J. E., Y. Wu, J. Huang, L. Zhang, R. E. Pratt, and V. J. Dzau. Mesenchymal stem cells use integrin beta 1 not CXC chemokine receptor 4 for myocardial migration and engraftment. Mol. Biol. Cell 18:2873–2882, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Janeway, C., P. Travers, M. Walport, and M. Shlomchik. Immunobiology: the immune system in health and disease. Curr. Biol. 1:11, 2001.

    Google Scholar 

  22. Lange, J. R., J. Steinwachs, T. Kolb, L. A. Lautscham, I. Harder, G. Whyte, and B. Fabry. Microconstriction arrays for high-throughput quantitative measurements of cell mechanical properties. Biophys. J. 109:26–34, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lois, C., and A. Alvarezbuylla. Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148, 1994.

    Article  CAS  PubMed  Google Scholar 

  24. Luo, T., K. Mohan, P. A. Iglesias, and D. N. Robinson. Molecular mechanisms of cellular mechanosensing. Nat. Mater. 12:1064–1071, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Majstoravich, S., J. Y. Zhang, S. Nicholson-Dykstra, S. Linder, W. Friedrich, K. A. Siminovitch, and H. N. Higgs. Lymphocyte microvilli are dynamic, actin-dependent structures that do not require Wiskott-Aldrich syndrome protein (WASp) for their morphology. Blood 104:1396–1403, 2004.

    Article  CAS  PubMed  Google Scholar 

  26. Needham, D., and R. M. Hochmuth. Rapid flow of passive neutrophils into a 4 Mu-M pipette and measurement of cytoplasmic viscosity. J. Biomech. Eng. Trans. ASME 112:269–276, 1990.

    Article  CAS  Google Scholar 

  27. Nishino, M., H. Tanaka, H. Ogura, Y. Inoue, T. Koh, K. Fujita, and H. Sugimoto. Serial changes in leukcocyte deformability and whole blood rheology in patients with sepsis or trauma. J. Trauma Injury Infect. Crit. Care 59:1425–1431, 2005.

    Article  Google Scholar 

  28. Phillips, R., J. Kondev, J. Theriot, and H. Garcia. Physical Biology of the Cell. New York: Garland Science, 2012.

    Google Scholar 

  29. Plaza, G. R., and T. Q. P. Uyeda. Contraction speed of the actomyosin cytoskeleton in the absence of the cell membrane. Soft Matter 9:4390–4400, 2013.

    Article  CAS  Google Scholar 

  30. Plaza, G. R., N. Marí, B. G. Gálvez, A. Bernal, G. V. Guinea, R. Daza, J. Pérez-Rigueiro, C. Solanas, and M. Elices. Simple measurement of the apparent viscosity of a cell from only one picture: application to cardiac stem cells. Phys. Rev. E 90:052715, 2014.

    Article  CAS  Google Scholar 

  31. Plaza, G. R., T. Q. P. Uyeda, Z. Mirzaei, and C. A. Simmons. Study of the influence of actin-binding proteins using linear analyses of cell deformability. Soft Matter 11:5435–5446, 2015.

    Article  CAS  PubMed  Google Scholar 

  32. Poschl, J. M. B., P. Ruef, and O. Linderkamp. Deformability of passive and activated neutrophils in children with Gram-negative septicemia. Scand. J. Clin. Lab. Invest. 65:333–339, 2005.

    Article  CAS  PubMed  Google Scholar 

  33. Rodriguez, M. L., P. J. McGarry, and N. J. Sniadecki. Review on cell mechanics: experimental and modeling approaches. Appl. Mech. Rev. 65:060801, 2013.

    Article  Google Scholar 

  34. Stewart, M. P., J. Helenius, Y. Toyoda, S. P. Ramanathan, D. J. Muller, and A. A. Hyman. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469:226–230, 2011.

    Article  CAS  PubMed  Google Scholar 

  35. Suresh, S., J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein. Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1:15–30, 2005.

    Article  CAS  PubMed  Google Scholar 

  36. Svetina, S., G. Kokot, T. S. Kebe, B. Zeks, and R. E. Waugh. A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation. Biomech. Model. Mechanobiol. 15:745–758, 2016.

    Article  PubMed  Google Scholar 

  37. Swift, J., I. L. Ivanovska, A. Buxboim, T. Harada, P. C. D. P. Dingal, J. Pinter, J. D. Pajerowski, K. R. Spinler, J. Shin, M. Tewari, F. Rehfeldt, D. W. Speicher, and D. E. Discher. Nuclear Lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Theret, D. P., M. J. Levesque, M. Sato, R. M. Nerem, and L. T. Wheeler. The application of a homogeneous half-space model in the analysis of endothelial-cell micropipette measurements. J. Biomech. Eng. Trans. ASME 110:190–199, 1988.

    Article  CAS  Google Scholar 

  39. Trepat, X., L. Deng, S. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. J. Fredberg. Universal physical responses to stretch in the living cell. Nature 447:592, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Trickey, W. R., G. M. Lee, and F. Guilak. Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J. Orthop. Res. 18:891–898, 2000.

    Article  CAS  PubMed  Google Scholar 

  41. Urayama, K., T. Takigawa, and T. Masuda. Poisson ratio of poly(vinyl alcohol) gels. Macromolecules 26:3092–3096, 1993.

    Article  CAS  Google Scholar 

  42. Villora, E. G., K. Shimamura, and G. R. Plaza. Ultraviolet-visible optical isolators based on CeF3 Faraday rotator. J. Appl. Phys. 117:233101, 2015.

    Article  Google Scholar 

  43. Wang, N., J. D. Tytell, and D. E. Ingber. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10:75–82, 2009.

    Article  CAS  PubMed  Google Scholar 

  44. Worthen, G. S., B. Schwab, E. L. Elson, and G. P. Downey. Mechanics of stimulated neutrophils—cell stiffening induces retention in capillaries. Science 245:183–186, 1989.

    Article  CAS  PubMed  Google Scholar 

  45. Yeung, A., and E. Evans. Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets. Biophys. J. 56:139–149, 1989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. YongSheng, Li, and Chen WeiYi. Finite element analysis of micropipette aspiration considering finite size and compressibility of cells. Sci. China Phys. Mech. Astron. 56:2208–2215, 2013.

    Article  Google Scholar 

  47. Zahalak, G. I., W. B. Mcconnaughey, and E. L. Elson. Determination of cellular mechanical-properties by cell poking, with an application to leukocytes. J. Biomech. Eng. Trans. ASME 112:283–294, 1990.

    Article  CAS  Google Scholar 

  48. Zhou, E. H., C. T. Lim, and S. T. Quek. Finite element simulation of the micropipette aspiration of a living cell undergoing large viscoelastic deformation. Mech. Adv. Mater. Struct. 12:501–512, 2005.

    Article  Google Scholar 

  49. Zhou, E. H., F. D. Martinez, and J. J. Fredberg. Cell rheology mush rather than machine. Nat. Mater. 12:184–185, 2013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank M. Carmen Álvarez for her help in preparing microscopy samples. Blanca González-Bermúdez received a research grant from the Consejería de Educación, Juventud y Deporte de la Comunidad de Madrid. The authors received support from the Ministerio de Economía y Competitividad, Spain, througth the project MAT2016-76847-R.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo R. Plaza.

Additional information

Associate Editor Konstantinos Konstantopoulos oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 173 kb)

Supplementary material 2 (AVI 557 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esteban-Manzanares, G., González-Bermúdez, B., Cruces, J. et al. Improved Measurement of Elastic Properties of Cells by Micropipette Aspiration and Its Application to Lymphocytes. Ann Biomed Eng 45, 1375–1385 (2017). https://doi.org/10.1007/s10439-017-1795-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1795-7

Keywords

Navigation