Skip to main content
Log in

Effects of Biowastes Released by Mechanically Damaged Muscle Cells on the Propagation of Deep Tissue Injury: A Multiphysics Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Deep tissue injuries occur in muscle tissues around bony prominences under mechanical loading leading to severe pressure ulcers. Tissue compression can potentially compromise lymphatic transport and cause accumulation of metabolic biowastes, which may cause further cell damage under continuous mechanical loading. In this study, we hypothesized that biowastes released by mechanically damaged muscle cells could be toxic to the surrounding muscle cells and could compromise the capability of the surrounding muscle cells to withstand further mechanical loadings. In vitro, we applied prolonged low compressive stress (PLCS) and short-term high compressive stress to myoblasts to cause cell damage and collected the biowastes released by the damaged cells under the respective loading scenarios. In silico, we used COMSOL to simulate the compressive stress distribution and the diffusion of biowastes in a semi-3D buttock finite element model. In vitro results showed that biowastes collected from cells damaged under PLCS were more toxic and could compromise the capability of normal myoblasts to resist compressive damage. In silico results showed that higher biowastes diffusion coefficient, higher biowastes release rate, lower biowastes tolerance threshold and earlier timeline of releasing biowastes would cause faster propagation of tissue damage. This study highlighted the importance of biowastes in the development of deep tissue injury to clinical pressure ulcers under prolonged skeletal compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bader, D. L., C. Bouten, D. Colin, and C. W. J. Oomens. Pressure Ulcer Research: Current and Future Perspectives. New York: Springer, 2005.

    Book  Google Scholar 

  2. Basser, P. J., J. Mattiello, and D. LeBihan. MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1):259, 1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bliss, M. R. Aetiology of pressure sores. Rev. Clin. Gerontol. 3(04):379–397, 1993.

    Article  Google Scholar 

  4. Bogie, K. M., I. Nuseibeh, and D. L. Bader. Early progressive changes in tissue viability in the seated spinal cord injured subject. Spinal Cord 33(3):141–147, 1995.

    Article  CAS  Google Scholar 

  5. Bouten, C. V., M. M. Knight, D. A. Lee, and D. L. Bader. Compressive deformation and damage of muscle cell subpopulations in a model system. Ann. Biomed. Eng. 29(2):153–163, 2001.

    Article  CAS  PubMed  Google Scholar 

  6. Breuls, R. G. M., C. V. C. Bouten, C. W. J. Oomens, D. L. Bader, and F. P. T. Baaijens. Compression induced cell damage in engineered muscle tissue: an in vitro model to study pressure ulcer aetiology. Ann. Biomed. Eng. 31(11):1357–1364, 2003.

    Article  CAS  PubMed  Google Scholar 

  7. Byrne, D. W., and C. A. Salzberg. Major risk factors for pressure ulcers in the spinal cord disabled: a literature review. Spinal Cord 34:255–263, 1996.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng, W., B. Li, J. Kajstura, P. Li, M. S. Wolin, E. H. Sonnenblick, T. H. Hintze, G. Olivetti, and P. Anversa. Stretch-induced programmed myocyte cell death. J. Clin. Investig. 96(5):2247, 1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Comley, K., and N. A. Fleck. The high strain rate response of adipose tissue. In: IUTAM Symposium on Mechanical Properties of Cellular Materials (pp. 27–33). Springer, Netherlands, 2009.

  10. Comley, K., and N. A. Fleck. A micromechanical model for the Young’s modulus of adipose tissue. Int. J. Solids Struct. 47(21):2982–2990, 2010.

    Article  Google Scholar 

  11. Damon, B. M., Z. Ding, A. W. Anderson, A. S. Freyer, and J. C. Gore. Validation of diffusion tensor MRI-based muscle fiber tracking. Magn. Reson. Med. 48(1):97–104, 2002.

    Article  PubMed  Google Scholar 

  12. Elsner, J. J., and A. Gefen. Is obesity a risk factor for deep tissue injury in patients with spinal cord injury? J. Biomech. 41(16):3322–3331, 2008.

    Article  PubMed  Google Scholar 

  13. Fan, R. H., and M. D. Does. Compartmental relaxation and diffusion tensor imaging measurements in vivo in λ-carrageenan-induced edema in rat skeletal muscle. NMR Biomed. 21(6):566–573, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Frost, R. A., C. H. Lang, and M. C. Gelato. Transient exposure of human myoblasts to tumor necrosis factor-α inhibits serum and insulin-like growth factor-I stimulated protein synthesis 1. Endocrinology 138(10):4153–4159, 1997.

    CAS  Google Scholar 

  15. Gawlitta, D., W. Li, C. W. J. Oomens, F. P. Baaijens, D. L. Bader, and C. V. Bouten. The relative contributions of compression and hypoxia to development of muscle tissue damage: an in vitro study. Ann. Biomed. Eng. 35(2):273–284, 2007.

    Article  PubMed  Google Scholar 

  16. Gefen, A., L. H. Cornelissen, D. Gawlitta, D. L. Bader, and C. W. Oomens. The free diffusion of macromolecules in tissue-engineered skeletal muscle subjected to large compression strains. J. Biomech. 41(4):845–853, 2008.

    Article  PubMed  Google Scholar 

  17. Gefen, A., and E. Haberman. Viscoelastic properties of ovine adipose tissue covering the gluteus muscles. J. Biomech. Eng. 129(6):924–930, 2007.

    Article  PubMed  Google Scholar 

  18. Greiwe, J. S., B. O. Cheng, D. C. Rubin, K. E. Yarasheski, and C. F. Semenkovich. Resistance exercise decreases skeletal muscle tumor necrosis factor α in frail elderly humans. FASEB J. 15(2):475–482, 2001.

    Article  CAS  PubMed  Google Scholar 

  19. Heemskerk, A. M., G. J. Strijkers, M. R. Drost, G. S. van Bochove, and K. Nicolay. Skeletal muscle degeneration and regeneration after femoral artery ligation in mice: monitoring with diffusion MR imaging 1. Radiology 243(2):413–421, 2007.

    Article  PubMed  Google Scholar 

  20. Heidlauf, T., and O. Röhrle. Modeling the chemoelectromechanical behavior of skeletal muscle using the parallel open-source software library OpenCMISS. Comput. Math. Methods Med. 2013:517287, 2013.

  21. Henkel, J. S., D. R. Beers, W. Zhao, and S. H. Appel. Reactive Oxygen and Nitrogen Species—A Driving Force in Amyotrophic Lateral Sclerosis. Systems Biology of Free Radicals and Antioxidants. Berlin: Springer, pp. 3141–3165, 2014.

    Google Scholar 

  22. Hsieh, M. H., and H. T. Nguyen. Molecular mechanism of apoptosis induced by mechanical forces. Int. Rev. Cytol. 245:45–90, 2005.

    Article  CAS  PubMed  Google Scholar 

  23. Joda, A., Z. Jin, A. Haverich, J. Summers, and S. Korossis. Multiphysics simulation of the effect of leaflet thickness inhomogeneity and material anisotropy on the stress–strain distribution on the aortic valve. J. Biomech. 2016. doi:10.1016/j.jbiomech.2016.02.041.

  24. Kang, I., D. Panneerselvam, V. P. Panoskaltsis, S. J. Eppell, R. E. Marchant, and C. M. Doerschuk. Changes in the hyperelastic properties of endothelial cells induced by tumor necrosis factor-α. Biophys. J. 94(8):3273–3285, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krouskop, T. A. A synthesis of the factors that contribute to pressure sore formation. Med. Hypotheses 11:255–267, 1983.

    Article  CAS  PubMed  Google Scholar 

  26. Lemaire, T., J. Kaiser, S. Naili, and V. Sansalone. Three-scale multiphysics modeling of transport phenomena within cortical bone. Math. Probl. Eng. 2015. doi:10.1155/2015/398970.

  27. Leopold, E., and A. Gefen. Stretching affects intracellular oxygen levels: three-dimensional multiphysics studies. J. Biomech. Eng. 134(6):064501, 2012.

    Article  PubMed  Google Scholar 

  28. Leopold, E., R. Sopher, and A. Gefen. The effect of compressive deformations on the rate of build-up of oxygen in isolated skeletal muscle cells. Med. Eng. Phys. 33(9):1072–1078, 2011.

    Article  PubMed  Google Scholar 

  29. Leri, A., Y. Liu, B. Li, F. Fiordaliso, A. Malhotra, R. Latini, J. Kajstura, and P. Anversa. Up-regulation of AT 1 and AT 2 receptors in postinfarcted hypertrophied myocytes and stretch-mediated apoptotic cell death. Am. J. Pathol. 156(5):1663–1672, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ley, O., and T. Kim. Calculation of arterial wall temperature in atherosclerotic arteries: effect of pulsatile flow, arterial geometry, and plaque structure. Biomed Eng Online 6(8):1, 2007.

    Google Scholar 

  31. Li, Y., and M. B. Reid. Effect of tumor necrosis factor-α on skeletal muscle metabolism. Curr. Opin. Rheumatol. 13(6):483–487, 2001.

    Article  CAS  PubMed  Google Scholar 

  32. Li, Y. P., and R. J. Schwartz. TNF-α regulates early differentiation of C2C12 myoblasts in an autocrine fashion. FASEB J. 15(8):1413–1415, 2001.

    CAS  PubMed  Google Scholar 

  33. Lim, D., F. Lin, R. W. Hendrix, B. Moran, C. Fasanati, and M. Makhsous. Evaluation of a new sitting concept designed for prevention of pressure ulcer on the buttock using finite element analysis. Med. Biol. Eng. Comput. 45(11):1079–1084, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Linder-Ganz, E., S. Engelberg, M. Scheinowitz, and A. Gefen. Pressure–time cell death threshold for albino rat skeletal muscles as related to pressure sore biomechanics. J. Biomech. 39(14):2725–2732, 2006.

    Article  PubMed  Google Scholar 

  35. Linder-Ganz, E., and A. Gefen. Mechanical compression induced pressure sores in rat hindlimb: muscle stiffness, histology, and computational models. J. Appl. Physiol. 96:2034–2049, 2004.

    Article  CAS  PubMed  Google Scholar 

  36. Linder-Ganz, E., and A. Gefen. Stress analyses coupled with damage laws to determine biomechanical risk factors for deep tissue injury during sitting. J. Biomech. Eng. 131(1):011003, 2009.

    Article  PubMed  Google Scholar 

  37. Linder-Ganz, E., N. Shabshin, Y. Itzchak, and A. Gefen. Assessment of mechanical conditions in sub-dermal tissues during sitting: a combined experimental-MRI and finite element approach. J. Biomech. 40(7):1443–1454, 2007.

    Article  PubMed  Google Scholar 

  38. Linder-Ganz, E., G. Yarnitzky, Z. Yizhar, I. Siev-Ner, and A. Gefen. Real-time finite element monitoring of sub-dermal tissue stresses in individuals with spinal cord injury: toward prevention of pressure ulcers. Ann. Biomed. Eng. 37:387–400, 2009.

    Article  PubMed  Google Scholar 

  39. Mak, A. F. T., Y. Y. Yu, L. P. C. Kwan, L. Sun, and E. W. C. Tam. Deformation and reperfusion damages and their accumulation in subcutaneous tissues during loading and unloading: a theoretical modeling of deep tissue injuries. J. Theor. Biol. 289:65–73, 2011.

    Article  PubMed  Google Scholar 

  40. Mak, A. F., M. Zhang, and E. W. Tam. Biomechanics of pressure ulcer in body tissues interacting with external forces during locomotion. Annu. Rev. Biomed. Eng. 12:29–53, 2010.

    Article  CAS  PubMed  Google Scholar 

  41. Makhsous, M., D. Lim, R. Hendrix, J. Bankard, W. Z. Rymer, and F. Lin. Finite element analysis for evaluation of pressure ulcer on the buttock: development and validation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(4):517–525, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Miller, G. E., and J. L. Seake. The recovery of terminal lymph flow following occlusion. J. Biomed. Eng. 109:48–54, 1987.

    CAS  Google Scholar 

  43. Oomens, C. W. J., S. Loerakker, and D. L. Bader. The importance of internal strain as opposed to interface pressure in the prevention of pressure related deep tissue injury. J. Tissue Viability 19(2):35–42, 2010.

    Article  CAS  PubMed  Google Scholar 

  44. Oomens, C. W. J., M. Maenhout, C. H. Van Oijen, M. R. Drost, and F. P. Baaijens. Finite element modelling of contracting skeletal muscle. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358(1437):1453–1460, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Palevski, A., I. Glaich, S. Portnoy, E. Linder-Ganz, and A. Gefen. Stress relaxation of porcine gluteus muscle subjected to sudden transverse deformation as related to pressure sore modeling. J. Biomech. Eng. 128(5):782–787, 2006.

    Article  PubMed  Google Scholar 

  46. Peake, J., P. Della Gatta, K. Suzuki, and D. Nieman. Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects. Exerc. Immunol. Rev. 21:8–25, 2015.

    PubMed  Google Scholar 

  47. Pedersen, B. K. Muscular interleukin-6 and its role as an energy sensor. Med. Sci. Sports Exerc. 44(3):392–396, 2012.

    Article  CAS  PubMed  Google Scholar 

  48. Pelling, A. E., F. S. Veraitch, C. P. Chu, B. M. Nicholls, A. L. Hemsley, C. Mason, and M. A. Horton. Mapping correlated membrane pulsations and fluctuations in human cells. J. Mol. Recognit. 20(6):467–475, 2007.

    Article  CAS  PubMed  Google Scholar 

  49. Reddy, N. P. Effects of Mechanical Stresses on Lymph and Interstitial Fluid Flow. Pressure Sores: Clinical Practice and Scientific Approach. London: Macmillan, pp. 203–220, 1990.

    Book  Google Scholar 

  50. Ruschkewitz, Y., and A. Gefen. Cell-level temperature distributions in skeletal muscle post spinal cord injury as related to deep tissue injury. Med. Biol. Eng. Comput. 48(2):113–122, 2010.

    Article  PubMed  Google Scholar 

  51. Siu, P. M., E. W. Tam, B. T. Teng, X. M. Pei, J. W. Ng, I. F. Benzi, and A. F. Mak. Muscle apoptosis is induced in pressure-induced deep tissue injury. J. Appl. Physiol. 107:1266–1275, 2009.

    Article  CAS  PubMed  Google Scholar 

  52. Slomka, N., and A. Gefen. Relationship between strain levels and permeability of the plasma membrane in statically stretched myoblasts. Ann. Biomed. Eng. 40(3):606–618, 2012.

    Article  PubMed  Google Scholar 

  53. Slomka, N., S. Or-Tzadikario, D. Sassun, and A. Gefen. Membrane-stretch-induced cell death in deep tissue injury: computer model studies. Cell Mol. Bioeng. 2(1):118–132, 2009.

    Article  CAS  Google Scholar 

  54. Solis, L. R., A. Liggins, R. R. Uwiera, N. Poppe, E. Pehowich, P. Seres, R. B. Thompson, and V. K. Mushahwar. Distribution of internal pressure around bony prominences: implications to deep tissue injury and effectiveness of intermittent electrical stimulation. Ann. Biomed. Eng. 40(8):1740–1759, 2012.

    Article  PubMed  Google Scholar 

  55. Taylor, R. C., S. P. Cullen, and S. J. Martin. Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 9(3):231–241, 2008.

    Article  CAS  PubMed  Google Scholar 

  56. Tham, L. M., H. P. Lee, and C. Lu. Cupping: from a biomechanical perspective. J. Biomech. 39(12):2183–2193, 2006.

    Article  CAS  PubMed  Google Scholar 

  57. Tsivitse, S. K., E. Mylona, J. M. Peterson, W. T. Gunning, and F. X. Pizza. Mechanical loading and injury induce human myotubes to release neutrophil chemoattractants. Am. J. Physiol. Cell Physiol. 288(3):C721–C729, 2005.

    Article  CAS  PubMed  Google Scholar 

  58. Van Donkelaar, C. C., L. J. G. Kretzers, P. H. M. Bovendeerd, L. M. A. Lataster, K. Nicolay, J. D. Janssen, and M. R. Drost. Diffusion tensor imaging in biomechanical studies of skeletal muscle function. J. Anat. 194(1):79–88, 1999.

    Article  PubMed  Google Scholar 

  59. Van Nierop, B. J., A. Stekelenburg, S. Loerakker, C. W. Oomens, D. Bader, G. J. Strijkers, and K. Nicolay. Diffusion of water in skeletal muscle tissue is not influenced by compression in a rat model of deep tissue injury. J. Biomech. 43(3):570–575, 2010.

    Article  PubMed  Google Scholar 

  60. Verver, M. M., J. Van Hoof, C. W. J. Oomens, J. S. H. M. Wismans, and F. P. T. Baaijens. A finite element model of the human buttocks for prediction of seat pressure distributions. Comput. Methods Biomech. Biomed. Eng. 7(4):193–203, 2004.

    Article  CAS  Google Scholar 

  61. Vilcek, J., and T. H. Lee. Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions. J. Biol. Chem. 266(12):7313–7316, 1991.

    CAS  PubMed  Google Scholar 

  62. Wójciak-Stothard, B., A. Entwistle, R. Garg, and A. J. Ridley. Regulation of TNF-α-induced reorganization of the actin cytoskeleton and cell-cell junctions by Rho, Rac, and Cdc42 in human endothelial cells. J. Cell. Physiol. 176(1):150–165, 1998.

    Article  PubMed  Google Scholar 

  63. Wong, S. W., S. Sun, M. Cho, K. K. Lee, and A. F. T. Mak. H2O2 exposure affects myotube stiffness and actin filament polymerization. Ann. Biomed. Eng. 43(5):1178–1188, 2015.

    Article  PubMed  Google Scholar 

  64. Xiao, D. Z., S. Y. Wu, and A. F. Mak. Accumulation of loading damage and unloading reperfusion injury—modeling of the propagation of deep tissue ulcers. J. Biomech. 47(7):1658–1664, 2014.

    Article  PubMed  Google Scholar 

  65. Yao, Y., Z. Xiao, S. Wong, Y. C. Hsu, T. Cheng, C. C. Chang, L. Bian, and A. F. Mak. The effects of oxidative stress on the compressive damage thresholds of C2C12 mouse myoblasts: implications for deep tissue injury. Ann. Biomed. Eng. 43(2):287–296, 2015.

    Article  PubMed  Google Scholar 

  66. Zaraiskaya, T., D. Kumbhare, and M. D. Noseworthy. Diffusion tensor imaging in evaluation of human skeletal muscle injury. J. Magn. Reson. Imaging 24(2):402–408, 2006.

    Article  PubMed  Google Scholar 

  67. Zhang, Y., G. Pilon, A. Marette, and V. E. Baracos. Cytokines and endotoxin induce cytokine receptors in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 279(1):E196–E205, 2000.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Hong Kong Research Grant Council (RGC Ref. No.: CUHK415413).

Conflict of interest

No conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur F. T. Mak.

Additional information

Associate Editor Karol Miller oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Da Ong, L.X., Li, X. et al. Effects of Biowastes Released by Mechanically Damaged Muscle Cells on the Propagation of Deep Tissue Injury: A Multiphysics Study. Ann Biomed Eng 45, 761–774 (2017). https://doi.org/10.1007/s10439-016-1731-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1731-2

Keywords

Navigation