Skip to main content
Log in

Hemodynamic Influence on Smooth Muscle Cell Kinetics and Phenotype During Early Vein Graft Adaptation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Pathologic vascular adaptation following local injury is the primary driver for accelerated intimal hyperplasia and an occlusive phenotype. Smooth muscle cell (SMC) proliferation within the wall, and migration into the developing intima, is a major component of this remodeling response. The primary objective in the current study was to investigate the effect of the local biomechanical forces on early vein graft adaptation, specifically focusing on the spatial and temporal response of SMC proliferation and conversion from a contractile to synthetic architecture. Taking advantage of the differential adaptation that occurs during exposure to divergent flow environments, vein grafts were implanted in rabbits to create two distinct flow environments and harvested at times ranging from 2 h to 28 days. Using an algorithm for the virtual reconstruction of unfixed, histologic specimens, immunohistochemical tracking of DNA synthesis, and high-throughput transcriptional analysis, the spatial and temporal changes in graft morphology, cell proliferation, and SMC phenotype were catalogued. Notable findings include a burst of cell proliferation at 7 days post-implantation, which was significantly augmented by exposure to a reduced flow environment. Compared to the adjacent media, proliferation rates were 3-fold greater in the intima, and a specific spatial distribution of these proliferating cells was identified, with a major peak in the sub-endothelial region and a second peak centering on the internal elastic lamina. Genomic markers of a contractile SMC phenotype were reduced as early as 2 h post-implantation and reached a nadir at 7 days. Network analysis of upstream regulatory pathways identified GATA6 and KLF5 as important transcription factors that regulate this shift in SMC phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Arganda-Carreras, I., R. Fernandez-Gonzalez, A. Munoz-Barrutia, and C. Ortiz-De-Solorzano. 3D reconstruction of histological sections: application to mammary gland tissue. Microsc. Res. Tech. 73:1019–1029, 2010.

    Article  PubMed  Google Scholar 

  2. Asada, H., J. Paszkowiak, D. Teso, K. Alvi, A. Thorisson, J. C. Frattini, F. A. Kudo, B. E. Sumpio, and A. Dardik. Sustained orbital shear stress stimulates smooth muscle cell proliferation via the extracellular signal-regulated protein kinase 1/2 pathway. J. Vasc. Surg. 42:772–780, 2005.

    Article  PubMed  Google Scholar 

  3. Bagci, U., and L. Bai. Automatic best reference slice selection for smooth volume reconstruction of a mouse brain from histological images. IEEE Trans. Med. Imaging 29:1688–1696, 2010.

    Article  PubMed  Google Scholar 

  4. Berceli, S. A., R. Tran-Son-Tay, M. Garbey, and Z. H. Jiang. Hemodynamically driven vein graft remodeling: a systems biology approach. Vascular 17:S2–S9, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cifor, A., T. Pridmore, and A. Pitiot. Smooth 3-D reconstruction for 2-D histological images. Inf. Process Med. Imaging 21:350–361, 2009.

    Article  PubMed  Google Scholar 

  6. Conte, M. S., D. F. Bandyk, A. W. Clowes, G. L. Moneta, L. Seely, T. J. Lorenz, H. Namini, A. D. Hamdan, S. P. Roddy, M. Belkin, S. A. Berceli, R. J. DeMasi, R. H. Samson, and S. S. Berman. Results of PREVENT III: a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J. Vasc. Surg. 43:742–751, 2006.

    Article  PubMed  Google Scholar 

  7. Dobrin, P. B., F. N. Littooy, and E. D. Endean. Mechanical factors predisposing to intimal hyperplasia and medial thickening in autogenous vein grafts. Surgery 105:393–400, 1989.

    CAS  PubMed  Google Scholar 

  8. Fernandez, C. M., D. R. Goldman, Z. Jiang, C. K. Ozaki, R. Tran-Son-Tay, and S. A. Berceli. Impact of shear stress on early vein graft remodeling: a biomechanical analysis. Ann. Biomed. Eng. 32:1484–1493, 2004.

    Article  PubMed  Google Scholar 

  9. Garbey, M., and S. A. Berceli. A dynamical system that describes vein graft adaptation and failure. J. Theor. Biol. 336:209–220, 2013.

    Article  PubMed  Google Scholar 

  10. Garratt, K. N., W. D. Edwards, U. P. Kaufmann, R. E. Vlietstra, and D. R. Holmes, Jr. Differential histopathology of primary atherosclerotic and restenotic lesions in coronary arteries and saphenous vein bypass grafts: analysis of tissue obtained from 73 patients by directional atherectomy. J. Am. Coll. Cardiol. 17:442–448, 1991.

    Article  CAS  PubMed  Google Scholar 

  11. Haga, M., A. Yamashita, J. Paszkowiak, B. E. Sumpio, and A. Dardik. Oscillatory shear stress increases smooth muscle cell proliferation and Akt phosphorylation. J. Vasc. Surg. 37:1277–1284, 2003.

    Article  PubMed  Google Scholar 

  12. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000.

    Article  Google Scholar 

  13. Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–H2058, 2005.

    Article  CAS  PubMed  Google Scholar 

  14. Hwang, M., S. A. Berceli, M. Garbey, N. H. Kim, and R. Tran-Son-Tay. The dynamics of vein graft remodeling induced by hemodynamic forces: a mathematical model. Biomech. Model. Mechanobiol. 11:411–423, 2012.

    Article  PubMed  Google Scholar 

  15. Hwang, M., M. Garbey, S. A. Berceli, and R. Tran-Son-Tay. Rule-based simulation of multi-cellular biological systems—a review of modeling techniques. Cell. Mol. Bioeng. 2:285–294, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hwang, M., M. Garbey, S. A. Berceli, R. L. Wu, Z. H. Jiang, and R. Tran-Son-Tay. Rule-based model of vein graft remodeling. Plos One 8:e57822, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang, Z., L. Wu, B. L. Miller, D. R. Goldman, C. M. Fernandez, Z. S. Abouhamze, C. K. Ozaki, and S. A. Berceli. A novel vein graft model: adaptation to differential flow environments. Am. J. Physiol. Heart Circ. Physiol. 286:H240–H245, 2004.

    Article  CAS  PubMed  Google Scholar 

  18. Ju, T., J. Warren, J. Carson, M. Bello, I. Kakadiaris, W. Chiu, C. Thaller, and G. Eichele. 3D volume reconstruction of a mouse brain from histological sections using warp filtering. J. Neurosci. Methods 156:84–100, 2006.

    Article  PubMed  Google Scholar 

  19. Kockx, M. M., B. A. Cambier, H. E. Bortier, G. R. De Meyer, and P. A. Van Cauwelaert. The modulation of smooth muscle cell phenotype is an early event in human aorto-coronary saphenous vein grafts. Virchows Arch. A Pathol. Anat. Histopathol. 420:155–162, 1992.

    Article  CAS  PubMed  Google Scholar 

  20. Laurent, S., P. Boutouyrie, and P. Lacolley. Structural and genetic bases of arterial stiffness. Hypertension 45:1050–1055, 2005.

    Article  CAS  PubMed  Google Scholar 

  21. Meyerson, S. L., C. L. Skelly, M. A. Curi, U. M. Shakur, J. E. Vosicky, S. Glagov, L. B. Schwartz, T. Christen, and G. Gabbiani. The effects of extremely low shear stress on cellular proliferation and neointimal thickening in the failing bypass graft. J. Vasc. Surg. 34:90–97, 2001.

    Article  CAS  PubMed  Google Scholar 

  22. Owens, C. D., W. J. Gasper, A. S. Rahman, and M. S. Conte. Vein graft failure. J. Vasc. Surg. 61:203–216, 2015.

    Article  PubMed  Google Scholar 

  23. Owens, G. K., M. S. Kumar, and B. R. Wamhoff. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 84:767–801, 2004.

    Article  CAS  PubMed  Google Scholar 

  24. Peterson, L. H., R. E. Jensen, and J. Parnell. Mechanical properties of arteries in vivo. Circ. Res. 8:622–639, 1960.

    Article  Google Scholar 

  25. Rzucidlo, E. M., K. A. Martin, and R. J. Powell. Regulation of vascular smooth muscle cell differentiation. J. Vasc. Surg. 45:25A–32A, 2007.

    Article  Google Scholar 

  26. Schwartz, L. B., M. K. O’Donohoe, C. M. Purut, E. M. Mikat, P. O. Hagen, and R. L. McCann. Myointimal thickening in experimental vein grafts is dependent on wall tension. J. Vasc. Surg. 15:176–186, 1992.

    Article  CAS  PubMed  Google Scholar 

  27. Shi, Y., J. E. O’Brien, Jr, J. D. Mannion, R. C. Morrison, W. Chung, A. Fard, and A. Zalewski. Remodeling of autologous saphenous vein grafts. The role of perivascular myofibroblasts. Circulation. 95:2684–2693, 1997.

    Article  CAS  PubMed  Google Scholar 

  28. Sumpio, B. E., A. J. Banes, L. G. Levin, and G. Johnson. Mechanical-stress stimulates aortic endothelial-cells to proliferate. J. Vasc. Surg. 6:252–256, 1987.

    Article  CAS  PubMed  Google Scholar 

  29. Tada, S., and J. M. Tarbell. Interstitial flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 278:H1589–H1597, 2000.

    CAS  PubMed  Google Scholar 

  30. Tada, S., and J. M. Tarbell. Flow through internal elastic lamina affects shear stress on smooth muscle cells (3D simulations). Am. J. Physiol. Heart Circ. Physiol. 282:H576–H584, 2002.

    Article  CAS  PubMed  Google Scholar 

  31. Werner, M., A. Chott, A. Fabiano, and H. Battifora. Effect of formalin tissue fixation and processing on immunohistochemistry. Am. J. Surg. Pathol. 24:1016–1019, 2000.

    Article  CAS  PubMed  Google Scholar 

  32. Zwolak, R. M., M. C. Adams, and A. W. Clowes. Kinetics of vein graft hyperplasia: association with tangential stress. J. Vasc. Surg. 5:126–136, 1987.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the National Institutes of Health (NIH-NHLBI U01-HL119178). The authors would like to thank Angela Cuenca for her efforts in performing the animal models used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Berceli.

Additional information

Associate Editor Scott I. Simon oversaw the review of this article.

Benjamin Klein and Anthony Destephens have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 10859 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, B., Destephens, A., Dumeny, L. et al. Hemodynamic Influence on Smooth Muscle Cell Kinetics and Phenotype During Early Vein Graft Adaptation. Ann Biomed Eng 45, 644–655 (2017). https://doi.org/10.1007/s10439-016-1725-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1725-0

Keywords

Navigation