Skip to main content

Advertisement

Log in

Methods for Generating Hydrogel Particles for Protein Delivery

  • Emerging Trends in Biomaterials Research
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Proteins represent a major class of therapeutic molecules with vast potential for the treatment of acute and chronic diseases and regenerative medicine applications. Hydrogels have long been investigated for their potential in carrying and delivering proteins. As compared to bulk hydrogels, hydrogel microparticles (microgels) hold promise in improving aspects of delivery owing to their less traumatic route of entry into the body and improved versatility. This review discusses common methods of fabricating microgels, including emulsion polymerization, microfluidic techniques, and lithographic techniques. Microgels synthesized from both natural and synthetic polymers are discussed, as are a series of microgels fashioned from environment-responsive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Albrecht, K., and A. Bernkop-Schnurch. Thiomers: forms, functions and applications to nanomedicine. Nanomedicine (Lond) 2:41–50, 2007.

    Article  CAS  Google Scholar 

  2. Allazetta, S., T. C. Hausherr, and M. P. Lutolf. Microfluidic synthesis of cell-type-specific artificial extracellular matrix hydrogels. Biomacromolecules 14:1122–1131, 2013.

    Article  CAS  PubMed  Google Scholar 

  3. Allazetta, S., L. Kolb, S. Zerbib, J. Bardy, and M. P. Lutolf. Cell-Instructive microgels with tailor-made physicochemical properties. Small 11:5647–5656, 2015.

    Article  CAS  PubMed  Google Scholar 

  4. An, Y., L. Zhang, S. Xiong, S. Wu, M. Xu, and Z. Xu. Fluorine-containing thermo-sensitive microgels as carrier systems for biomacromolecules. Colloids Surf. B 92:246–253, 2012.

    Article  CAS  Google Scholar 

  5. Bae, K. H., F. Lee, K. Xu, C. T. Keng, S. Y. Tan, Y. J. Tan, Q. Chen, and M. Kurisawa. Microstructured dextran hydrogels for burst-free sustained release of PEGylated protein drugs. Biomaterials 63:146–157, 2015.

    Article  CAS  PubMed  Google Scholar 

  6. Bonnar, J., and J. Walsh. Prevention of thrombosis after pelvic surgery by British dextran 70. Lancet 1:614–616, 1972.

    Article  CAS  PubMed  Google Scholar 

  7. Bridges, A. W., N. Singh, K. L. Burns, J. E. Babensee, L. A. Lyon, and A. J. Garcia. Reduced acute inflammatory responses to microgel conformal coatings. Biomaterials 29:4605–4615, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bridges, A. W., R. E. Whitmire, N. Singh, K. L. Templeman, J. E. Babensee, L. A. Lyon, and A. J. Garcia. Chronic inflammatory responses to microgel-based implant coatings. J. Biomed. Mater. Res. A 94:252–258, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bromberg, L., M. Temchenko, and T. A. Hatton. Dually responsive microgels from polyether-modified poly(acrylic acid): swelling and drug loading. Langmuir 18:4944–4952, 2002.

    Article  CAS  Google Scholar 

  10. Cavalieri, F., E. Chiessi, R. Villa, L. Vigano, N. Zaffaroni, M. F. Telling, and G. Paradossi. Novel PVA-based hydrogel microparticles for doxorubicin delivery. Biomacromolecules 9:1967–1973, 2008.

    Article  CAS  PubMed  Google Scholar 

  11. Chun, S.-W., and J.-D. Kim. A novel hydrogel-dispersed composite membrane of poly(N-isopropylacrylamide) in a gelatin matrix and its thermally actuated permeation of 4-acetamidophen. J. Control. Release 38:39–47, 1996.

    Article  CAS  Google Scholar 

  12. Chung, B. G., K. H. Lee, A. Khademhosseini, and S. H. Lee. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip 12:45–59, 2012.

    Article  CAS  PubMed  Google Scholar 

  13. Clark, M. R., H. A. Aliyar, C.-W. Lee, J. I. Jay, K. M. Gupta, K. M. Watson, R. J. Stewart, R. W. Buckheit, and P. F. Kiser. Enzymatic triggered release of an HIV-1 entry inhibitor from prostate specific antigen degradable microparticles. Int. J. Pharm. 413:10–18, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Das, A., D. A. Barker, T. Wang, C. M. Lau, Y. Lin, and E. A. Botchwey. Delivery of bioactive lipids from composite microgel-microsphere injectable scaffolds enhances stem cell recruitment and skeletal repair. PLoS One 9:e101276, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dendukuri, D., S. S. Gu, D. C. Pregibon, T. A. Hatton, and P. S. Doyle. Stop-flow lithography in a microfluidic device. Lab Chip 7:818–828, 2007.

    Article  CAS  PubMed  Google Scholar 

  16. DeVolder, R. J., and H.-J. Kong. Three dimensionally flocculated proangiogenic microgels for neovascularization. Biomaterials 31:6494–6501, 2010.

    Article  CAS  PubMed  Google Scholar 

  17. Flake, M. M., P. K. Nguyen, R. A. Scott, L. R. Vandiver, R. K. Willits, and D. L. Elbert. Poly(ethylene glycol) microparticles produced by precipitation polymerization in aqueous solution. Biomacromolecules 12:844–850, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fucinos, C., P. Fucinos, M. Miguez, I. Katime, L. M. Pastrana, and M. L. Rua. Temperature- and pH-sensitive nanohydrogels of poly(N-Isopropylacrylamide) for food packaging applications: modelling the swelling-collapse behaviour. PLoS One 9:e87190, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Goeddel, D. V., D. G. Kleid, F. Bolivar, H. L. Heyneker, D. G. Yansura, R. Crea, T. Hirose, A. Kraszewski, K. Itakura, and A. D. Riggs. Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc. Natl. Acad. Sci. USA 76:106–110, 1979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Griffin, D. R., W. M. Weaver, P. O. Scumpia, D. Di Carlo, and T. Segura. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 14:737–744, 2015.

    Article  CAS  PubMed  Google Scholar 

  21. Gu, Z., T. T. Dang, M. Ma, B. C. Tang, H. Cheng, S. Jiang, Y. Dong, Y. Zhang, and D. G. Anderson. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano 7:6758–6766, 2013.

    Article  CAS  PubMed  Google Scholar 

  22. Gutowski, S. M., K. L. Templeman, A. B. South, J. C. Gaulding, J. T. Shoemaker, M. C. LaPlaca, R. V. Bellamkonda, L. A. Lyon, and A. J. Garcia. Host response to microgel coatings on neural electrodes implanted in the brain. J. Biomed. Mater. Res. A 102:1486–1499, 2014.

    Article  PubMed  Google Scholar 

  23. Hahn, S. K., J. S. Kim, and T. Shimobouji. Injectable hyaluronic acid microhydrogels for controlled release formulation of erythropoietin. J. Biomed. Mater. Res. A 80:916–924, 2007.

    Article  PubMed  Google Scholar 

  24. Hamilton, S. R., R. C. Davidson, N. Sethuraman, J. H. Nett, Y. Jiang, S. Rios, P. Bobrowicz, T. A. Stadheim, H. Li, B.-K. Choi, D. Hopkins, H. Wischnewski, J. Roser, T. Mitchell, R. R. Strawbridge, J. Hoopes, S. Wildt, and T. U. Gerngross. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313:1441–1443, 2006.

    Article  CAS  PubMed  Google Scholar 

  25. Headen, D. M., G. Aubry, H. Lu, and A. J. Garcia. Microfluidic-based generation of size-controlled, biofunctionalized synthetic polymer microgels for cell encapsulation. Adv. Mater. 26:3003–3008, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Helgeson, M. E., S. C. Chapin, and P. S. Doyle. Hydrogel microparticles from lithographic processes: novel materials for fundamental and applied colloid science. Curr. Opin. Colloid Interface Sci. 16:106–117, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hennink, W. E., and C. F. van Nostrum. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 54:13–36, 2002.

    Article  CAS  PubMed  Google Scholar 

  28. Hoare, T., and R. Pelton. Highly pH and temperature responsive microgels functionalized with vinylacetic acid. Macromolecules 37:2544–2550, 2004.

    Article  CAS  Google Scholar 

  29. Holland, T. A., Y. Tabata, and A. G. Mikos. In vitro release of transforming growth factor-beta 1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels. J. Control Release 91:299–313, 2003.

    Article  CAS  PubMed  Google Scholar 

  30. Impellitteri, N. A., M. W. Toepke, S. K. L. Levengood, and W. L. Murphy. Specific VEGF sequestering and release using peptide-functionalized hydrogel microspheres. Biomaterials 33:3475–3484, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jaworek, A. Micro- and nanoparticle production by electrospraying. Powder Technol. 176:18–35, 2007.

    Article  CAS  Google Scholar 

  32. Jha, A. K., A. Mathur, F. L. Svedlund, J. Ye, Y. Yeghiazarians, and K. E. Healy. Molecular weight and concentration of heparin in hyaluronic acid-based matrices modulates growth factor retention kinetics and stem cell fate. J. Control Release 209:308–316, 2015.

    Article  CAS  PubMed  Google Scholar 

  33. Johnson, I. Human insulin from recombinant DNA technology. Science 219:632–637, 1983.

    Article  CAS  PubMed  Google Scholar 

  34. Kang, E., G. S. Jeong, Y. Y. Choi, K. H. Lee, A. Khademhosseini, and S. H. Lee. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nat. Mater. 10:877–883, 2011.

    Article  CAS  PubMed  Google Scholar 

  35. Kim, P.-H., H.-G. Yim, Y.-J. Choi, B.-J. Kang, J. Kim, S.-M. Kwon, B.-S. Kim, N. S. Hwang, and J.-Y. Cho. Injectable multifunctional microgel encapsulating outgrowth endothelial cells and growth factors for enhanced neovascularization. J. Control. Release 187:1–13, 2014.

    Article  CAS  PubMed  Google Scholar 

  36. Kiser, P. F., G. Wilson, and D. Needham. A synthetic mimic of the secretory granule for drug delivery. Nature 394:459–462, 1998.

    Article  CAS  PubMed  Google Scholar 

  37. Knipe, J. M., F. Chen, and N. A. Peppas. Multiresponsive polyanionic microgels with inverse pH responsive behavior by encapsulation of polycationic nanogels. J. Appl. Polym. Sci. 131:40098, 2014.

    Article  Google Scholar 

  38. Kozlovskaya, V., and S. A. Sukhishvili. Amphoteric hydrogel capsules: multiple encapsulation and release routes. Macromolecules 39:6191–6199, 2006.

    Article  CAS  Google Scholar 

  39. Leader, B., Q. J. Baca, and D. E. Golan. Protein therapeutics: a summary and pharmacological classification. Nat. Rev. Drug Discov. 7:21–39, 2008.

    Article  CAS  PubMed  Google Scholar 

  40. Lee, T. T., J. R. García, J. I. Paez, A. Singh, E. A. Phelps, S. Weis, Z. Shafiq, A. Shekaran, A. del Campo, and A. J. García. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat. Mater. 14:352–360, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liechty, W. B., R. L. Scheuerle, and N. A. Peppas. Tunable, responsive nanogels containing t-butyl methacrylate and 2-(t-butylamino)ethyl methacrylate. Polymer 54:3784–3795, 2013.

    Article  CAS  Google Scholar 

  42. Lin, C. C., and A. T. Metters. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliv. Rev. 58:1379–1408, 2006.

    Article  CAS  PubMed  Google Scholar 

  43. Lyon, L. A., Z. Meng, N. Singh, C. D. Sorrell, and A. St.John. Thermoresponsive microgel-based materials. Chem. Soc. Rev. 38:865–874, 2009.

    Article  CAS  PubMed  Google Scholar 

  44. Ma, J. K. C., P. M. W. Drake, and P. Christou. The production of recombinant pharmaceutical proteins in plants. Nat. Rev. Genet. 4:794–805, 2003.

    Article  CAS  PubMed  Google Scholar 

  45. MacKinnon, N., G. Guerin, B. Liu, C. C. Gradinaru, and P. M. Macdonald. Liposome-hydrogel bead complexes prepared via biotin-avidin conjugation. Langmuir 25:9413–9423, 2009.

    Article  CAS  PubMed  Google Scholar 

  46. Marquis, M., J. Davy, B. Cathala, A. Fang, and D. Renard. Microfluidics assisted generation of innovative polysaccharide hydrogel microparticles. Carbohydr. Polym. 116:189–199, 2015.

    Article  CAS  PubMed  Google Scholar 

  47. Meng, Z., M. H. Smith, and L. A. Lyon. Temperature-programmed synthesis of micron-sized multi-responsive microgels. Colloid Polym. Sci. 287:277–285, 2009.

    Article  CAS  Google Scholar 

  48. Merkel, T. J., K. Chen, S. W. Jones, A. A. Pandya, S. Tian, M. E. Napier, W. E. Zamboni, and J. M. DeSimone. The effect of particle size on the biodistribution of low-modulus hydrogel PRINT particles. J. Control Release 162:37–44, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Murthy, N., M. Xu, S. Schuck, J. Kunisawa, N. Shastri, and J. M. Frechet. A macromolecular delivery vehicle for protein-based vaccines: acid-degradable protein-loaded microgels. Proc. Natl. Acad. Sci. USA 100:4995–5000, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Necas, J., L. Bartosikova, P. Brauner, and J. Kolar. Hyaluronic acid (hyaluronan): a review. Vet. Med. 53:397–411, 2008.

    CAS  Google Scholar 

  51. Nguyen, A. H., J. McKinney, T. Miller, T. Bongiorno, and T. C. McDevitt. Gelatin methacrylate microspheres for controlled growth factor release. Acta Biomater. 13:101–110, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nolan, C. M., M. J. Serpe, and L. A. Lyon. Thermally modulated insulin release from microgel thin films. Biomacromolecules 5:1940–1946, 2004.

    Article  CAS  PubMed  Google Scholar 

  53. Parlato, M., A. Johnson, G. A. Hudalla, and W. L. Murphy. Adaptable poly(ethylene glycol) microspheres capable of mixed-mode degradation. Acta Biomater. 9:9270–9280, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pich, A., and W. Richtering. Microgels by precipitation polymerization: synthesis, characterization, and functionalization. In: Chemical Design of Responsive Microgels, edited by A. Pich, and W. Richtering. Berlin: Heidelberg, Springer, 2011.

    Chapter  Google Scholar 

  55. Reichert, J. M. Trends in development and approval times for new therapeutics in the United States. Nat. Rev. Drug Discov. 2:695–702, 2003.

    Article  CAS  PubMed  Google Scholar 

  56. Rios, J. L., G. Lu, N. E. Seo, T. Lambert, and D. Putnam. Prolonged release of bioactive model proteins from anionic microgels fabricated with a new microemulsion approach. Pharm. Res. 33(4):879–892, 2016.

    Article  CAS  PubMed  Google Scholar 

  57. Sajeesh, S., K. Bouchemal, V. Marsaud, C. Vauthier, and C. P. Sharma. Cyclodextrin complexed insulin encapsulated hydrogel microparticles: an oral delivery system for insulin. J. Control Release 147:377–384, 2010.

    Article  CAS  PubMed  Google Scholar 

  58. Sajeesh, S., C. Vauthier, C. Gueutin, G. Ponchel, and C. P. Sharma. Thiol functionalized polymethacrylic acid-based hydrogel microparticles for oral insulin delivery. Acta Biomater. 6:3072–3080, 2010.

    Article  CAS  PubMed  Google Scholar 

  59. Schein, C. H. Production of soluble recombinant proteins in bacteria. Nat. Biotech. 7:1141–1149, 1989.

    Article  CAS  Google Scholar 

  60. Schoener, C. A., H. N. Hutson, and N. A. Peppas. pH-responsive hydrogels with dispersed hydrophobic nanoparticles for the oral delivery of chemotherapeutics. J. Biomed. Mater. Res. A 101:2229–2236, 2013.

    Article  PubMed  Google Scholar 

  61. Serrano-Medina, A., J. M. Cornejo-Bravo, and A. Licea-Claveríe. Synthesis of pH and temperature sensitive, core–shell nano/microgels, by one pot, soap-free emulsion polymerization. J. Colloid Interface Sci. 369:82–90, 2012.

    Article  CAS  PubMed  Google Scholar 

  62. Sung, B., C. Kim, and M.-H. Kim. Biodegradable colloidal microgels with tunable thermosensitive volume phase transitions for controllable drug delivery. J. Colloid Interface Sci. 450:26–33, 2015.

    Article  CAS  PubMed  Google Scholar 

  63. Tibbitt, M. W., B. W. Han, A. M. Kloxin, and K. S. Anseth. Synthesis and application of photodegradable microspheres for spatiotemporal control of protein delivery. J. Biomed. Mater. Res. A 100:1647–1654, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tomei, A. A., V. Manzoli, C. A. Fraker, J. Giraldo, D. Velluto, M. Najjar, A. Pileggi, R. D. Molano, C. Ricordi, C. L. Stabler, and J. A. Hubbell. Device design and materials optimization of conformal coating for islets of Langerhans. Proc. Natl. Acad. Sci. USA 111:10514–10519, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Utech, S., R. Prodanovic, A. S. Mao, R. Ostafe, D. J. Mooney, and D. A. Weitz. Microfluidic generation of monodisperse, structurally homogeneous alginate microgels for cell encapsulation and 3D cell culture. Adv. Healthc. Mater. 4:1628–1633, 2015.

    Article  CAS  PubMed  Google Scholar 

  66. Vanderhoff J. W., E. B. Bradford, H. L. Tarkowski, J. B. Shaffer and R. M. Wiley. Inverse emulsion polymerization. In: Polymerization and Polycondensation Processes. Washington, DC: American Chemical Society, 1962, pp. 32–51.

  67. Vettori, M. H. P. B., S. M. M. Franchetti, and J. Contiero. Structural characterization of a new dextran with a low degree of branching produced by Leuconostoc mesenteroides FT045B dextransucrase. Carbohydr. Polym. 88:1440–1444, 2012.

    Article  CAS  Google Scholar 

  68. Wanakule, P., G. W. Liu, A. T. Fleury, and K. Roy. Nano-inside-micro: Disease-responsive microgels with encapsulated nanoparticles for intracellular drug delivery to the deep lung. J. Control. Release 162:429–437, 2012.

    Article  CAS  PubMed  Google Scholar 

  69. Wee, S., and W. R. Gombotz. Protein release from alginate matrices. Adv. Drug. Deliv. Rev. 31:267–285, 1998.

    Article  PubMed  Google Scholar 

  70. Welsch, N., A. L. Becker, J. Dzubiella, and M. Ballauff. Core-shell microgels as “smart” carriers for enzymes. Soft Matter 8:1428–1436, 2012.

    Article  CAS  Google Scholar 

  71. Wohl-Bruhn, S., M. Badar, A. Bertz, B. Tiersch, J. Koetz, H. Menzel, P. P. Mueller, and H. Bunjes. Comparison of in vitro and in vivo protein release from hydrogel systems. J. Control Release 162:127–133, 2012.

    Article  PubMed  Google Scholar 

  72. Wu, Y., H. Hu, J. Hu, and S. Liu. Glucose-regulated insulin release from acid-disintegrable microgels covalently immobilized with glucose oxidase and catalase. Macromol. Rapid Commun. 33:1852–1860, 2012.

    Article  CAS  PubMed  Google Scholar 

  73. Wurm, F. M. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 22:1393–1398, 2004.

    Article  CAS  PubMed  Google Scholar 

  74. Yin, R., K. Wang, S. Du, L. Chen, J. Nie, and W. Zhang. Design of genipin-crosslinked microgels from concanavalin A and glucosyloxyethyl acrylated chitosan for glucose-responsive insulin delivery. Carbohydr. Polym. 103:369–376, 2014.

    Article  CAS  PubMed  Google Scholar 

  75. Young, C. J., L. A. Poole-Warren, and P. J. Martens. Combining submerged electrospray and UV photopolymerization for production of synthetic hydrogel microspheres for cell encapsulation. Biotechnol. Bioeng. 109:1561–1570, 2012.

    Article  CAS  PubMed  Google Scholar 

  76. Young, S., M. Wong, Y. Tabata, and A. G. Mikos. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J. Control Release 109:256–274, 2005.

    Article  CAS  PubMed  Google Scholar 

  77. Zachman, A. L., X. Wang, J. M. Tucker-Schwartz, S. T. Fitzpatrick, S. H. Lee, S. A. Guelcher, M. C. Skala, and H.-J. Sung. Uncoupling angiogenesis and inflammation in peripheral artery disease with therapeutic peptide-loaded microgels. Biomaterials 35:9635–9648, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

AJG is supported by the NIH (R01 AR062368, R01 AR062920, R21 EB020107) and the Juvenile Diabetes Research Foundation (2-SRA-2014-287-Q-R, 3-SRA-2015-38-Q-R). AL is supported by the NIH-sponsored Program on Graduate Training for Rationally Designed, Integrative Biomaterials (T32 EB006343).

Conflict of Interest

No conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés J. García.

Additional information

Associate Editor Akhilesh K Gaharwar oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A.L., García, A.J. Methods for Generating Hydrogel Particles for Protein Delivery. Ann Biomed Eng 44, 1946–1958 (2016). https://doi.org/10.1007/s10439-016-1637-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1637-z

Keywords

Navigation