Skip to main content

Advertisement

Log in

Thiol-ene Clickable Poly(glycidol) Hydrogels for Biofabrication

  • Additive Manufacturing of Biomaterials, Tissues, and Organs
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this study we introduce linear poly(glycidol) (PG), a structural analog of poly(ethylene glycol) bearing side chains at each repeating unit, as polymer basis for bioink development. We prepare allyl- and thiol-functional linear PG that can rapidly be polymerized to a three-dimensionally cross-linked hydrogel network via UV mediated thiol-ene click reaction. Influence of polymer concentration and UV irradiation on mechanical properties and swelling behavior was examined. Thiol-functional PG was synthesized in two structural variations, one containing ester groups that are susceptible to hydrolytic cleavage, and the other one ester-free and stable against hydrolysis. This allowed the preparation of degradable and non-degradable hydrogels. Cytocompatibility of the hydrogel was demonstrated by encapsulation of human bone marrow-derived mesenchymal stem cells (hBMSCs). Rheological properties of the hydrogels were adjusted for dispense plotting by addition of high molecular weight hyaluronic acid. The optimized formulation enabled highly reproducible plotting of constructs composed of 20 layers with an overall height of 3.90 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Akhtar, R., M. J. Sherratt, J. K. Cruickshank, and B. Derby. Characterizing the elastic properties of tissues. Mater. Today 14:96–105, 2011.

    Article  CAS  Google Scholar 

  2. Allison, D. D., and K. J. Grande-Allen. Review. Hyaluronan: a powerful tissue engineering tool. Tissue Eng. 12:2131–2140, 2006.

    Article  CAS  PubMed  Google Scholar 

  3. Billiet, T., M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–6041, 2012.

    Article  CAS  PubMed  Google Scholar 

  4. Bryant, S. J., T. T. Chowdhury, D. A. Lee, D. L. Bader, and K. S. Anseth. Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly(ethylene glycol) hydrogels. Ann. Biomed. Eng. 32:407–417, 2004.

    Article  PubMed  Google Scholar 

  5. Derby, B. Printing and prototyping of tissues and scaffolds. Science 338:921–926, 2012.

    Article  CAS  PubMed  Google Scholar 

  6. Dworak, A., S. Slomkowski, T. Basinska, M. Gosecka, W. Walach, and B. Trzebicka. Polyglycidol—how is it synthesized and what is it used for? Polimery 58:641–649, 2013.

    Article  CAS  Google Scholar 

  7. Erberich, M., H. Keul, and M. Moeller. Polyglycidols with two orthogonal protective groups: preparation, selective deprotection, and functionalization. Macromolecules 40:3070–3079, 2007.

    Article  CAS  Google Scholar 

  8. Fitton, A. O., J. Hill, D. E. Jane, and R. Millar. Synthesis of simple oxetanes carrying reactive 2-substituents. Synthesis 1140–1142:1987, 1987.

    Google Scholar 

  9. Gramlich, W. M., I. L. Kim, and J. A. Burdick. Synthesis and orthogonal photopatterning of hyaluronic acid hydrogels with thiol-norbornene chemistry. Biomaterials 34:9803–9811, 2013.

    Article  CAS  PubMed  Google Scholar 

  10. Groll, J., T. Boland, T. Blunk, J. A. Burdick, D. W. Cho, P. D. Dalton, B. Derby, G. Forgacs, Q. Li, V. A. Mironov, L. Moroni, M. Nakamura, W. Shu, S. Takeuchi, G. Vozzi, T. B. F. Woodfield, T. Xu, J. J. Yoo, and J. Malda. Biofabrication: reappraising the definition of an evolving field. Biofabrication 8:013001, 2016.

    Article  PubMed  Google Scholar 

  11. Groll, J., S. Singh, K. Albrecht, and M. Moeller. Biocompatible and degradable nanogels via oxidation reactions of synthetic thiomers in inverse miniemulsion. J. Polym. Sci. A Polym. Chem. 47:5543–5549, 2009.

    Article  CAS  Google Scholar 

  12. Imran ul-haq, M., B. F. L. Lai, R. Chapanian, and J. N. Kizhakkedathu. Influence of architecture of high molecular weight linear and branched polyglycerols on their biocompatibility and biodistribution. Biomaterials 33:9135–9147, 2012.

    Article  CAS  PubMed  Google Scholar 

  13. Jungst, T., W. Smolan, K. Schacht, T. Scheibel, and J. Groll. Strategies and molecular design criteria for 3D printable hydrogels. Chem. Rev. 2016. doi:10.1021/acs.chemrev.5b00303.

    PubMed  Google Scholar 

  14. Kainthan, R. K., J. Janzen, E. Levin, D. V. Devine, and D. E. Brooks. Biocompatibility testing of branched and linear polyglycidol. Biomacromolecules 7:703–709, 2006.

    Article  CAS  PubMed  Google Scholar 

  15. Klein, T. J., S. C. Rizzi, J. C. Reichert, N. Georgi, J. Malda, W. Schuurman, R. W. Crawford, and D. W. Hutmacher. Strategies for zonal cartilage repair using hydrogels. Macromol. Biosci. 9:1049–1058, 2009.

    Article  CAS  PubMed  Google Scholar 

  16. Kuhlmann, M., and J. Groll. Dispersity control of linear poly(glycidyl ether)s by slow monomer addition. RSC Adv. 5:67323–67326, 2015.

    Article  CAS  Google Scholar 

  17. Levett, P. A., D. W. Hutmacher, J. Malda, and T. J. Klein. Hyaluronic acid enhances the mechanical properties of tissue-engineered cartilage constructs. PLoS One 9:e113216, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Malda, J., J. Visser, F. P. Melchels, T. Jüngst, W. E. Hennink, W. J. A. Dhert, J. Groll, and D. W. Hutmacher. 25th Anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25:5011–5028, 2013.

    Article  CAS  PubMed  Google Scholar 

  19. Melchels, F. P. W., M. A. N. Domingos, T. J. Klein, J. Malda, P. J. Bartolo, and D. W. Hutmacher. Additive manufacturing of tissues and organs. Prog. Polym. Sci. 37:1079–1104, 2012.

    Article  CAS  Google Scholar 

  20. Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotech. 32:773–785, 2014.

    Article  CAS  Google Scholar 

  21. Nichol, J. W., S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Owen, S. C., S. A. Fisher, R. Y. Tam, C. M. Nimmo, and M. S. Shoichet. Hyaluronic acid click hydrogels emulate the extracellular matrix. Langmuir 29:7393–7400, 2013.

    Article  CAS  PubMed  Google Scholar 

  23. Pereira, R. F., and P. J. Bártolo. 3D Photo-fabrication for tissue engineering and drug delivery. Engineering 1:90–112, 2015.

    Article  Google Scholar 

  24. Pereira, R. F., and P. J. Bártolo. 3D bioprinting of photocrosslinkable hydrogel constructs. J. Appl. Polym. Sci. 132:42458, 2015.

    Article  Google Scholar 

  25. Pescosolido, L., W. Schuurman, J. Malda, P. Matricardi, F. Alhaique, T. Coviello, P. R. van Weeren, W. J. A. Dhert, W. E. Hennink, and T. Vermonden. Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting. Biomacromolecules 12:1831–1838, 2011.

    Article  CAS  PubMed  Google Scholar 

  26. Robert, J. J., and S. J. Bryant. Comparison of photopolymerizable thiol-ene PEG and acrylate-based PEG hydrogels for cartilage development. Biomaterials 34:9969–9979, 2013.

    Article  Google Scholar 

  27. Schacht, K., T. Jungst, M. Schweinlin, A. Ewald, J. Groll, and T. Scheibel. Biofabrication of cell-loaded 3D spider silk constructs. Angew. Chem. Int. Ed. 54:1–6, 2015.

    Article  Google Scholar 

  28. Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona. Fiji: an open-source platform for biological-image analysis. Nat. Methods 7:676–682, 2012.

    Article  Google Scholar 

  29. Schuurman, W., P. A. Levett, M. W. Pot, P. R. van Weeren, W. J. A. Dhert, D. W. Hutmacher, F. P. W. Melchels, T. J. Klein, and J. Malda. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol. Biosci. 13:551–561, 2013.

    Article  CAS  PubMed  Google Scholar 

  30. Singh, S., F. Topuz, K. Hahn, K. Albrecht, and J. Groll. Embedding of active proteins and living cells in redox-sensitive hydrogels and nanogels through enzymatic cross-linking. Angew. Chem. Int. Ed. 52:3000–3003, 2013.

    Article  CAS  Google Scholar 

  31. Skardal, A., J. Zhang, L. McCoard, X. Xu, S. Oottamasathien, and G. D. Prestwich. Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng. A 16:2675–2685, 2010.

    Article  CAS  Google Scholar 

  32. Thomas, A., S. S. Müller, and H. Frey. Beyond Poly(ethylene glycol): linear polyglycerol as a multifunctional polyether for biomedical and pharmaceutical applications. Biomacromolecules 15:1935–1954, 2014.

    Article  CAS  PubMed  Google Scholar 

  33. Toepke, M. W., N. A. Impellitteri, J. M. Theisen, and W. L. Murphy. Characterization of thiol-ene crosslinked PEG hydrogels. Macromol. Mater. Eng. 29:699–703, 2013.

    Article  Google Scholar 

Download references

Acknowledgment

The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement n° 309962 (Project HydroZONES) and from the Interdisciplinary Center for Clinical Research Würzburg (Project Number D-219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Groll.

Additional information

Associate Editor Jos Malda oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1001 kb)

Supplementary material 2 (MP4 11037 kb)

Supplementary material 3 (MP4 12577 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stichler, S., Jungst, T., Schamel, M. et al. Thiol-ene Clickable Poly(glycidol) Hydrogels for Biofabrication. Ann Biomed Eng 45, 273–285 (2017). https://doi.org/10.1007/s10439-016-1633-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1633-3

Keywords

Navigation