Skip to main content
Log in

Development and Characterization of a 3D Printed, Keratin-Based Hydrogel

  • Additive Manufacturing of Biomaterials, Tissues, and Organs
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Keratin, a naturally-derived polymer derived from human hair, is physiologically biodegradable, provides adequate cell support, and can self-assemble or be crosslinked to form hydrogels. Nevertheless, it has had limited use in tissue engineering and has been mainly used as casted scaffolds for drug or growth factor delivery applications. Here, we present and assess a novel method for the printed, sequential production of 3D keratin scaffolds. Using a riboflavin-SPS-hydroquinone (initiator–catalyst–inhibitor) photosensitive solution we produced 3D keratin constructs via UV crosslinking in a lithography-based 3D printer. The hydrogels obtained have adequate printing resolution and result in compressive and dynamic mechanical properties, uptake and swelling capacities, cytotoxicity, and microstructural characteristics that are comparable or superior to those of casted keratin scaffolds previously reported. The novel keratin-based printing resin and printing methodology presented have the potential to impact future research by providing an avenue to rapidly and reproducibly manufacture patient-specific hydrogels for tissue engineering and regenerative medicine applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Balaji, S., R. Kumar, R. Sripriya, U. Rao, A. Mandal, P. Kakkar, P. N. Reddy, and P. K. Sehgal. Characterization of keratin-collagen 3D scaffold for biomedical applications. Polym. Adv. Technol. 23:500–507, 2012.

    Article  CAS  Google Scholar 

  2. Boateng, J. S., K. H. Matthews, H. N. E. Stevens, and G. M. Eccleston. Wound healing dressings and drug delivery systems: a review. J. Pharm. Sci. 97:2892–2923, 2008.

    Article  CAS  PubMed  Google Scholar 

  3. Buchanan, J. H. Cystine-rich protein-fraction from oxidized alpha-keratin. Biochem. J. 167:489–491, 1977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Guzman, R. C., M. R. Merrill, J. R. Richter, R. I. Hamzi, O. K. Greengauz-Roberts, and M. E. Van Dyke. Mechanical and biological properties of keratose biomaterials. Biomaterials 32:8205–8217, 2011.

    Article  PubMed  Google Scholar 

  5. Elvin, C. M., T. Vuocolo, A. G. Brownlee, L. Sando, M. G. Huson, N. E. Liyou, P. R. Stockwell, R. E. Lyons, M. Kim, G. A. Edwards, G. Johnson, G. A. McFarland, J. A. M. Ramshaw, and J. A. Werkmeister. A highly elastic tissue sealant based on photopolymerised gelatin. Biomaterials 31:8323–8331, 2010.

    Article  CAS  PubMed  Google Scholar 

  6. Fancy, D. A., and T. Kodadek. Chemistry for the analysis of protein-protein interactions: rapid and efficient cross-linking triggered by long wavelength light. Proc. Natl. Acad. Sci. USA 96:6020–6024, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fuchs, E. Keratins and the skin. Annu. Rev. Cell Dev. Biol. 11:123–153, 1995.

    Article  CAS  PubMed  Google Scholar 

  8. Ham, T. R., R. T. Lee, S. Han, S. Haque, Y. Vodovotz, J. Gu, L. R. Burnett, S. Tomblyn, and J. M. Saul. Tunable keratin hydrogels for controlled erosion and growth factor delivery. Biomacromolecules 17:225–236, 2016.

    Article  CAS  PubMed  Google Scholar 

  9. Hill, P. S., P. J. Apel, J. Barnwell, T. Smith, L. A. Koman, A. Atala, and M. Van Dyke. Repair of peripheral nerve defects in rabbits using keratin hydrogel scaffolds. Tissue Eng. Part A 17:1499–1505, 2011.

    Article  CAS  PubMed  Google Scholar 

  10. Hill, P., H. Brantley, and M. Van Dyke. Some properties of keratin biomaterials: kerateines. Biomaterials 31:585–593, 2010.

    Article  CAS  PubMed  Google Scholar 

  11. Humphries, J. D., A. Byron, and M. J. Humphries. Integrin ligands at a glance. J. Cell Sci. 119:3901–3903, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ikkai, F., and S. Naito. Dynamic light scattering and circular dichroism studies on heat-induced gelation of hard-keratin protein aqueous solutions. Biomacromolecules 3:482–487, 2002.

    Article  CAS  PubMed  Google Scholar 

  13. Kirfel, J., T. M. Magin, and J. Reichelt. Keratins: a structural scaffold with emerging functions. Cell. Mol. Life Sci. 60:56–71, 2003.

    Article  CAS  PubMed  Google Scholar 

  14. Layman, H., X. Li, E. Nagar, X. Vial, S. M. Pham, and F. M. Andreopoulos. Enhanced angiogenic efficacy through controlled and sustained delivery of FGF-2 and G-CSF from fibrin hydrogels containing ionic-albumin microspheres. J. Biomater. Sci. Polym. Ed. 23:185–206, 2012.

    Article  CAS  PubMed  Google Scholar 

  15. Malafaya, P. B., G. A. Silva, and R. L. Reis. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv. Rev. 59:207–233, 2007.

    Article  CAS  PubMed  Google Scholar 

  16. Marshall, R. C., D. F. G. Orwin, and J. M. Gillespie. Structure and biochemistry of Mammalian hard keratin. Electron. Microsc. Rev. 4:47–83, 1991.

    Article  CAS  PubMed  Google Scholar 

  17. Morais, J. M., F. Papadimitrakopoulos, and D. J. Burgess. Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J. 12:188–196, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nicodemus, G. D., and S. J. Bryant. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Pt. B Rev. 14:149–165, 2008.

    Article  CAS  Google Scholar 

  19. Popescu, C., and H. Hocker. Hair—the most sophisticated biological composite material. Chem. Soc. Rev. 36:1282–1291, 2007.

    Article  CAS  PubMed  Google Scholar 

  20. Richter, J. R., R. C. de Guzman, O. K. Greengauz-Roberts, and M. Van Dyke. Structure–property relationships of meta-kerateine biomaterials derived from human hair. Acta Biomater. 8:274–281, 2012.

    Article  CAS  PubMed  Google Scholar 

  21. Rouse, J. G., and M. E. Van Dyke. A review of keratin-based biomaterials for biomedical applications. Materials 3:999, 2010.

    Article  Google Scholar 

  22. Sando, L., M. Kim, M. L. Colgrave, J. A. Ramshaw, J. A. Werkmeister, and C. M. Elvin. Photochemical crosslinking of soluble wool keratins produces a mechanically stable biomaterial that supports cell adhesion and proliferation. J. Biomed. Mater. Res. Part A 95:901–911, 2010.

    Article  Google Scholar 

  23. Sierpinski, P., J. Garrett, J. Ma, P. Apel, D. Klorig, T. Smith, L. A. Koman, A. Atala, and M. Van Dyke. The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves. Biomaterials 29:118–128, 2008.

    Article  CAS  PubMed  Google Scholar 

  24. Singh, R., B. Sarker, R. Silva, R. Detsch, B. Dietel, C. Alexiou, A. R. Boccaccini, and I. Cicha. Evaluation of hydrogel matrices for vessel bioplotting: Vascular cell growth and viability. J. Biomed. Mater. Res. A 2015. doi:10.1002/jbm.b.33438.

    Google Scholar 

  25. Singh, D., D. Singh, and S. Han. 3D printing of scaffold for cells delivery: advances in skin tissue engineering. Polymers 8:19, 2016.

    Article  Google Scholar 

  26. Steinert, P. M., and M. I. Gullino. Bovine epidermal keratin filament assembly invitro. Biochem. Biophys. Res. Commun. 70:221–227, 1976.

    Article  CAS  PubMed  Google Scholar 

  27. Thilagar, S., N. A. Jothi, A. R. S. Omar, M. Y. Kamaruddin, and S. Ganabadi. Effect of keratin-gelatin and bFGF-gelatin composite film as a sandwich layer for full-thickness skin mesh graft in experimental dogs. J. Biomed. Mater. Res. B 88B:12–16, 2009.

    Article  CAS  Google Scholar 

  28. Thomas, H., A. Conrads, K. H. Phan, M. Vandelocht, and H. Zahn. Invitro reconstitution of wool intermediate filaments. Int. J. Biol. Macromol. 8:258–264, 1986.

    Article  CAS  Google Scholar 

  29. Tomblyn, S., E. L. PettitKneller, S. J. Walker, M. D. Ellenburg, C. J. Kowalczewski, M. Van Dyke, L. Burnett, and J. M. Saul. Keratin hydrogel carrier system for simultaneous delivery of exogenous growth factors and muscle progenitor cells. J. Biomed. Mater. Res. B Appl. Biomater. 2015. doi:10.1002/jbm.b.33438.

    PubMed  Google Scholar 

  30. Wang, S., Z. X. Wang, S. E. M. Foo, N. S. Tan, Y. Yuan, W. S. Lin, Z. Y. Zhang, and K. W. Ng. Culturing fibroblasts in 3D human hair keratin hydrogels. ACS Appl. Mater. Interfaces 7:5187–5198, 2015.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, Y., W. Zhang, J. Yuan, and J. Shen. Differences in cytocompatibility between collagen, gelatin and keratin. Mater. Sci. Eng. C Mater. Biol. Appl. 59:30–34, 2016.

    Article  PubMed  Google Scholar 

  32. Young, S., M. Wong, Y. Tabata, and A. G. Mikos. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J. Controlled Release 109:256–274, 2005.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by USAMRAA under Contract No. W81XWH-14-C-0022. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of USAMRAA. The authors thank the Fulbright Scholars Program (JNR), NIST grant program 2014-NIST-MSE-01 (MJL), and the SEEDS Undergraduate Research Fellowship program at the University of Maryland (GWL). Authors gratefully acknowledge Dr. Greg Gillen and Dr. Scott A. Wight at the National Institute of Standards and Technology (NIST, Gaithersburg, MD) for the training and use of their FEI Quanta 200F Environmental SEM and Coating Equipment.

Conflict of interest

JKP, GWL, JNR, MJL and JPF declare no conflicts of interest. ARG, GJH, EEF, ST, and LB are employed by KeraNetics, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Fisher.

Additional information

Associate Editor Amir Abbas Zadpoor oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Placone, J.K., Navarro, J., Laslo, G.W. et al. Development and Characterization of a 3D Printed, Keratin-Based Hydrogel. Ann Biomed Eng 45, 237–248 (2017). https://doi.org/10.1007/s10439-016-1621-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1621-7

Keywords

Navigation