Skip to main content
Log in

Development and Validation of a High Anatomical Fidelity FE Model for the Buttock and Thigh of a Seated Individual

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Current practices for designing new cushions for seats depend on superficial measurements, such as pressure mapping, which do not provide sufficient information about the condition of sub-dermal tissues. Finite element (FE) modelling offers a unique alternative to integrate assessment of sub-dermal tissue condition into seat/cushion design and development processes. However, the development and validation of such FE models for seated humans requires accurate representation of the anatomy and material properties, which remain challenges that are yet to be addressed. This paper presents the development and validation of a detailed 3D FE model with high anatomical fidelity of the buttock and thigh, for a specific seated subject. The developed model consisted of 28 muscles, the pelvis, sacrum, femur, and one layer of inter-muscular fat, subcutaneous fat and skin. Validation against in vivo measurements from MRI data confirmed that the FE model can simulate the deformation of soft tissues under sitting loads with an accuracy of (mean ± SD) 4.7 ± 4.4 mm. Simulation results showed that the maximum strains (compressive, shear and von-Mises) on muscles (41, 110, 79%) were higher than fat tissues (21, 62, 41%). The muscles that experienced the highest mechanical loads were the gluteus maximus, adductor magnus and muscles in the posterior aspect of the thighs (biceps femoris, semitendinosus and semimembranosus muscles). The developed FE model contributes to the progression towards bio-fidelity in modelling the human body in seated postures by providing insight into the distribution of stresses/strains in individual muscles and inter-muscular fat in the buttock and thigh of seated individuals. Industrial applications for the developed FE model include improving the design of office and household furniture, automotive and airplane seats and wheelchairs as well as customisation and assessment of sporting and medical equipment to meet individual requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Akimoto, M., T. Oka, K. Oki, and H. Hyakusoku. Finite element analysis of effect of softness of cushion pads on stress concentration due to an oblique load on pressure sores. J. Nippon Med. Sch. 74:230–235, 2007.

    Article  PubMed  Google Scholar 

  2. Al-Dirini R., M. Reed, G. Paul, and D. Thewlis. A subject-specific model of human buttocks and thighs in a seated posture. ACAM 7. Adelaide, 2012

  3. Al-Dirini, R. M., M. P. Reed, and D. Thewlis. Deformation of the gluteal soft tissues during sitting. Clin. Biomech. 30:662–668, 2015.

    Article  Google Scholar 

  4. Bensamoun, S. F., S. I. Ringleb, L. Littrell, Q. Chen, M. Brennan, R. L. Ehman, and K. N. An. Determination of thigh muscle stiffness using magnetic resonance elastography. J. Magn. Reson Imaging 23:242–247, 2006.

    Article  PubMed  Google Scholar 

  5. Bidar, M., R. Ragan, T. Kernozek, and J. Matheson. Finite element calculation of seat-interface pressures for various wheelchair cushion thicknesses. Univ. Wis. La Crosse J. Undergrad. Res. 3:277–280, 2000.

    Google Scholar 

  6. British Chiropractic Association. Nation is Bending Over Backwards at Work. 2006

  7. Brosh, T., and M. Arcan. Modeling the body/chair interaction—an integrative experimental–numerical approach. Clin. Biomech. 15:217–219, 2000.

    Article  CAS  Google Scholar 

  8. Ceelen, K., A. Stekelenburg, S. Loerakker, G. Strijkers, D. Bader, K. Nicolay, F. Baaijens, and C. Oomens. Compression-induced damage and internal tissue strains are related. J. Biomech. 41:3399–3404, 2008.

    Article  CAS  PubMed  Google Scholar 

  9. Choi, H. Y., K. M. Kim, J. Han, S. Sah, S. H. Kim, S. H. Hwang, K. N. Lee, J. K. Pyun, N. Montmayeur, and C. Marca. Human body modeling for riding comfort simulation. Berlin: Springer, pp. 813–823, 2007.

    Google Scholar 

  10. Dhingra, H., V. Tewari, and S. Singh. Discomfort, pressure distribution and safety in operator’s seat—a critical review. Agric. Eng. Int. 5:1–16, 2003.

    Google Scholar 

  11. Elsner, J. J., and A. Gefen. Is obesity a risk factor for deep tissue injury in patients with spinal cord injury? J. Biomech. 41:3322–3331, 2008.

    Article  PubMed  Google Scholar 

  12. Fletcher A. and P. Mitchell. Fatigue-related risks for Queensland taxi drivers—final report on the operational and scientific factors related to fatigue in taxi drivers, to inform the possible development of reform, regulation and industry guidelines, edited by Q. Government Integrated Safety Support, 2011, pp. 1–22.

  13. Grieco, A. Sitting posture: an old problem and a new one. Ergonomics 29:345–362, 1986.

    Article  CAS  PubMed  Google Scholar 

  14. Hu, J., K. D. Klinich, C. S. Miller, J. D. Rupp, G. Nazmi, M. D. Pearlman, and L. W. Schneider. A stochastic visco-hyperelastic model of human placenta tissue for finite element crash simulations. Ann. Biomed. Eng. 39:1074–1083, 2011.

    Article  PubMed  Google Scholar 

  15. Hu, J., J. D. Rupp, and M. P. Reed. Focusing on vulnerable populations in crashes: recent advances in finite element human models for injury biomechanics research. J. Automot. Saf. Energy 3:295–307, 2012.

    Google Scholar 

  16. Iwamoto, M., Y. Nakahira, H. Kimpara, T. Sugiyama, and K. Min. Development of a human body finite element model with multiple muscles and their controller for estimating occupant motions and impact responses in frontal crash situations. Stapp Car Crash J. 56:231, 2012.

    PubMed  Google Scholar 

  17. Kohandel, M., S. Sivaloganathan, and G. Tenti. Estimation of the quasi-linear viscoelastic parameters using a genetic algorithm. Math. Comput. Model. 47:266–270, 2008.

    Article  Google Scholar 

  18. Laurent, V., C. Then, and G. Silber. Human modeling and CAE based subjective seat comfort score correlation. Int. J. Commer. Veh. 7:295–304, 2014.

    Article  Google Scholar 

  19. Lim D., F. Lin, R. Hendrix, and M. Makhsous. Finite element analysis for evaluation of internal mechanical responses in buttock structure in a true sitting posture: development and validation. RESNA 29th International conference, 2006, pp. 22–26.

  20. Lim, D., F. Lin, R. W. Hendrix, B. Moran, C. Fasnati, and M. Makhsous. Evaluation of a new sitting concept designed for prevention of pressure ulcer on the buttock using finite element analysis. Med. Biol. Eng. Comput. 45:1079–1084, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Linder-Ganz, E., and A. Gefen. Mechanical compression-induced pressure sores in rat hindlimb: muscle stiffness, histology, and computational models. J. Appl. Physiol. 96:2034–2049, 2004.

    Article  CAS  PubMed  Google Scholar 

  22. Linder-Ganz, E., N. Shabshin, Y. Itzchak, and A. Gefen. Assessment of mechanical conditions in sub-dermal tissues during sitting: a combined experimental-MRI and finite element approach. J. Biomech. 40:1443–1454, 2007.

    Article  PubMed  Google Scholar 

  23. Linder-Ganz, E., N. Shabshin, Y. Itzchak, Z. Yizhar, I. Siev-Ner, and A. Gefen. Strains and stresses in sub-dermal tissues of the buttocks are greater in paraplegics than in healthy during sitting. J. Biomech. 41:567–580, 2008.

    Article  PubMed  Google Scholar 

  24. Linder-Ganz, E., G. Yarnitzky, Z. Yizhar, I. Siev-Ner, and A. Gefen. Real-time finite element monitoring of sub-dermal tissue stresses in individuals with spinal cord injury: toward prevention of pressure ulcers. Ann. Biomed. Eng. 37:387–400, 2009.

    Article  PubMed  Google Scholar 

  25. Loerakker, S., D. L. Bader, F. Baaijens, and C. Oomens. Which factors influence the ability of a computational model to predict the in vivo deformation behaviour of skeletal muscle? Comput. Method. Biomech. Biomed. Eng. 16:338–345, 2013.

    Article  CAS  Google Scholar 

  26. Luboz, V., M. Petrizelli, M. Bucki, B. Diot, N. Vuillerme, and Y. Payan. Biomechanical modeling to prevent ischial pressure ulcers. J. Biomech. 47:2231–2236, 2014.

    Article  PubMed  Google Scholar 

  27. Makhsous, M., D. Lim, R. Hendrix, J. Bankard, W. Z. Rymer, and F. Lin. Finite element analysis for evaluation of pressure ulcer on the buttock: development and validation. IEEE Trans. Neural Syst. Rehabil. Eng. 15:517–525, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Makhsous, M., and F. Lin. Bioengineering research of chronic wounds. In: A Finite-Element Biomechanical Model for Evaluating Buttock Tissue Loads in Seated Individuals with Spinal Cord Injury, edited by A. Gefen. Berlin: Springer, 2009, pp. 181–205.

    Google Scholar 

  29. Makhsous, M., F. Lin, A. Cichowski, I. Cheng, C. Fasanati, T. Grant, and R. W. Hendrix. Use of MRI images to measure tissue thickness over the ischial tuberosity at different hip flexion. Clin. Anat. 24:638–645, 2011.

    Article  PubMed  Google Scholar 

  30. Manu and E. Audenaert. Rigid ICP registration. Matlab Cetral File Exchange Mathworks, 2015.

  31. Mayhew C. and M. Quinlan. Occupational health and safety amongst 300 long distance truck drivers: results of an interview-based survey. Report of Inquiry into Safety in the Long Haul Trucking Industry, 2000.

  32. Mehta, C., and V. Tewari. Seating discomfort for tractor operators—a critical review. Int. J. Ind. Ergon. 25:661–674, 2000.

    Article  Google Scholar 

  33. Mergl, C., T. Anton, R. Madrid-Dusik, J. Hartung, A. Liberandi, and H. Bubb. Development of a 3D finite element model of thigh and pelvis. In: SAE Digital Human Modeling for Desing and Engineering Symposium, edited by SAE. Rochester: Oakland University, 2004.

    Google Scholar 

  34. Mills, N. Polymer Foams Handbook: Engineering and Biomechanics Applications and Design Guide. Boston: Butterworth-Heinemann, 2007.

    Google Scholar 

  35. Ogden, R. W. Non-linear Elastic Deformations. New York: Courier Dover Publications, 1997.

    Google Scholar 

  36. Olesen, C. G., M. de Zee, and J. Rasmussen. Missing links in pressure ulcer research—an interdisciplinary overview. J. Appl. Physiol. 108:1458–1464, 2010.

    Article  PubMed  Google Scholar 

  37. Petru, M. P. Development and optimization of the headrests seat according the signal Whiplash. Bull. Appl. Mech. 6:34–40, 2010.

    Google Scholar 

  38. Portnoy, S., I. Siev-Ner, N. Shabshin, A. Kristal, Z. Yizhar, and A. Gefen. Patient-specific analyses of deep tissue loads post transtibial amputation in residual limbs of multiple prosthetic users. J. Biomech. 42:2686–2693, 2009.

    Article  CAS  PubMed  Google Scholar 

  39. Portnoy, S., J. van Haare, R. P. Geers, A. Kristal, I. Siev-Ner, H. A. Seelen, C. W. Oomens, and A. Gefen. Real-time subject-specific analyses of dynamic internal tissue loads in the residual limb of transtibial amputees. Med. Eng. Phys. 32:312–323, 2010.

    Article  PubMed  Google Scholar 

  40. Ragan, R., T. W. Kernozek, M. Bidar, and J. Matheson. Seat-interface pressures on various thicknesses of foam wheelchair cushions: a finite modeling approach. Arch. Phys. Med. Rehabil. 83:872–875, 2002.

    Article  PubMed  Google Scholar 

  41. Shabshin, N., G. Zoizner, A. Herman, V. Ougortsin, and A. Gefen. Use of weight-bearing MRI for evaluating wheelchair cushions based on internal soft-tissue deformations under ischial tuberosities. J. Rehabil. Res. Dev. 47:31–42, 2010.

    Article  PubMed  Google Scholar 

  42. Shacham, S., D. Castel, and A. Gefen. Measurements of the static friction coefficient between bone and muscle tissues. J. Biomech. Eng. 132:084502, 2010.

    Article  PubMed  Google Scholar 

  43. Siefert A., S. Pankoke, and H. P. Wölfel. Detailed 3D muscle approach for computing dynamic loads on the lumbar spine for implant design. IFMBE, 2010

  44. Silber, G., and C. Then. Human body models: Boss-models. Berlin: Springer, pp. 175–244, 2013.

    Google Scholar 

  45. Silber, G., and C. Then. Preventive Biomechanics. Berlin: Springer, 2013.

    Book  Google Scholar 

  46. Sonenblum, S. E., S. H. Sprigle, J. M. Cathcart, and R. J. Winder. 3-Dimensional buttocks response to sitting: a case report. J. Tissue Viability 22:12–18, 2013.

    Article  PubMed  Google Scholar 

  47. Sopher, R., J. Nixon, C. Gorecki, and A. Gefen. Exposure to internal muscle tissue loads under the ischial tuberosities during sitting is elevated at abnormally high or low body mass indices. J. Biomech. 43:280–286, 2010.

    Article  PubMed  Google Scholar 

  48. Sopher, R., J. Nixon, C. Gorecki, and A. Gefen. Effects of intramuscular fat infiltration, scarring, and spasticity on the risk for sitting-acquired deep tissue injury in spinal cord injury patients. J. Biomech. Eng. 133:021011, 2011.

    Article  PubMed  Google Scholar 

  49. Stockton, L., and D. Parker. Pressure relief behaviour and the prevention of pressure ulcers in wheelchair users in the community. J. Tissue Viability 12(84):88–90, 2002.

    Google Scholar 

  50. Then, C., J. Menger, G. Benderoth, M. Alizadeh, T. Vogl, F. Hübner, and G. Silber. A method for a mechanical characterisation of human gluteal tissue. Technol. Health Care 15:385–398, 2007.

    CAS  PubMed  Google Scholar 

  51. Todd, B. A., and J. G. Thacker. Three-dimensional computer model of the human buttocks, in vivo. J. Rehabil. Res. Dev. 31:111, 1994.

    CAS  PubMed  Google Scholar 

  52. Tremblay, M. S., R. C. Colley, T. J. Saunders, G. N. Healy, and N. Owen. Physiological and health implications of a sedentary lifestyle. Appl. Physiol. Nutr. Metab. 35:725–740, 2010.

    Article  PubMed  Google Scholar 

  53. Untaroiu C., K. Darvish, J. Crandall, B. Deng, and J. T. Wang. Characterization of the lower limb soft tissues in pedestrian finite element models. 19th International Technical Conference on the Enhanced Safety of Vehicles, 2005

  54. Untaroiu, C. D., and Y.-C. Lu. Material characterization of liver parenchyma using specimen-specific finite element models. J. Mech. Behav. Biomed. Mater. 26:11–22, 2013.

    Article  PubMed  Google Scholar 

  55. Untaroiu C. D., Y.-C. Lu, and A. R. Kemper. Modeling the biomechanical and injury response of human liver parenchyma under tensile loading. Proceeding of the IRCOBI Conference, Goteborg, Sweden, 2013

  56. Untaroiu, C. D., N. Yue, and J. Shin. A finite element model of the lower limb for simulating automotive impacts. Ann. Biomed. Eng. 41:513–526, 2013.

    Article  PubMed  Google Scholar 

  57. Verver, M., J. Van Hoof, C. Oomens, J. Wismans, and F. Baaijens. A finite element model of the human buttocks for prediction of seat pressure distributions. Comput. Methods Biomech. Biomed. Eng. 7:193–203, 2004.

    Article  CAS  Google Scholar 

  58. Wall, J. Preventing pressure sores among wheelchair users. Prof. Nurse 15:321–324, 2000.

    CAS  PubMed  Google Scholar 

  59. Zhang, M., and A. Mak. In vivo friction properties of human skin. Prosthet. Orthot. Int. 23:135–141, 1999.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

AutoCRC and the Maurice de Rohan Scholarship funded this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami M. A. Al-Dirini.

Additional information

Associate Editor Amit Gefen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Dirini, R.M.A., Reed, M.P., Hu, J. et al. Development and Validation of a High Anatomical Fidelity FE Model for the Buttock and Thigh of a Seated Individual. Ann Biomed Eng 44, 2805–2816 (2016). https://doi.org/10.1007/s10439-016-1560-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1560-3

Keywords

Navigation