Skip to main content
Log in

Mapping 3D Strains with Ultrasound Speckle Tracking: Method Validation and Initial Results in Porcine Scleral Inflation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study aimed to develop and validate a high frequency ultrasound method for measuring distributive, 3D strains in the sclera during elevations of intraocular pressure. A 3D cross-correlation based speckle-tracking algorithm was implemented to compute the 3D displacement vector and strain tensor at each tracking point. Simulated ultrasound radiofrequency data from a sclera-like structure at undeformed and deformed states with known strains were used to evaluate the accuracy and signal-to-noise ratio (SNR) of strain estimation. An experimental high frequency ultrasound (55 MHz) system was built to acquire 3D scans of porcine eyes inflated from 15 to 17 and then 19 mmHg. Simulations confirmed good strain estimation accuracy and SNR (e.g., the axial strains had less than 4.5% error with SNRs greater than 16.5 for strains from 0.005 to 0.05). Experimental data in porcine eyes showed increasing tensile, compressive, and shear strains in the posterior sclera during inflation, with a volume ratio close to one suggesting near-incompressibility. This study established the feasibility of using high frequency ultrasound speckle tracking for measuring 3D tissue strains and its potential to characterize physiological deformations in the posterior eye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Burgoyne, C. F., J. C. Downs, A. J. Bellezza, J. K. Suh, and R. T. Hart. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog. Retin. Eye Res. 24:39–73, 2005.

    Article  PubMed  Google Scholar 

  2. Cohn, N. A., S. Y. Emelianov, M. A. Lubinski, and M. O’Donnell. An elasticity microscope. Part I: methods. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44:1304–1319, 1997.

    Article  Google Scholar 

  3. Coudrillier, B., J. Tian, S. Alexander, K. M. Myers, H. A. Quigley, and T. D. Nguyen. Biomechanics of the Human Posterior Sclera: age- and glaucoma-related changes measured using inflation testing. Invest. Ophthalmol. Vis. Sci. 53:1714–1728, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cruz Perez, B., J. Tang, H. J. Morris, J. R. Palko, X. Pan, R. T. Hart, and J. Liu. Biaxial mechanical testing of posterior sclera using high-resolution ultrasound speckle tracking for strain measurements. J. Biomech. 47:1151–1156, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Downs, J. C., J. K. F. Suh, K. A. Thomas, A. J. Bellezza, R. T. Hart, and C. F. Burgoyne. Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes. Invest. Ophthalmol. Vis. Sci. 46:540–546, 2005.

    Article  PubMed  Google Scholar 

  6. Eilaghi, A., J. G. Flanagan, I. Tertinegg, C. A. Simmons, G. Wayne Brodland, and C. Ross Ethier. Biaxial mechanical testing of human sclera. J. Biomech. 43:1696–1701, 2010.

    Article  PubMed  Google Scholar 

  7. Elsheikh, A., B. Geraghty, D. Alhasso, J. Knappett, M. Campanelli, and P. Rama. Regional variation in the biomechanical properties of the human sclera. Exp. Eye Res. 90:624–633, 2010.

    Article  CAS  PubMed  Google Scholar 

  8. Fazio, M. A., R. Grytz, L. Bruno, M. J. A. Girard, S. Gardiner, C. A. Girkin, and J. C. Downs. Regional variations in mechanical strain in the posterior human sclera. Invest. Ophthalmol. Vis. Sci. 53:5326, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Girard, M. J. A., J. C. Downs, C. F. Burgoyne, and J. K. F. Suh. Experimental surface strain mapping of porcine peripapillary sclera due to elevations of intraocular pressure. J. Biomech. Eng. 130:041017, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hollman, K. W., R. M. Shtein, S. Tripathy, and K. Kim. Using an ultrasound elasticity microscope to map three-dimensional strain in a porcine cornea. Ultrasound Med. Biol. 39:1451–1459, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jensen, J. A. Field: a program for simulating ultrasound systems. 10th Nordicbaltic Conference on Biomedical Imaging, Vol 4 Suppl. 1 Part 1, pp. 351–353, 1996.

  12. Jensen, J. A., and N. B. Svendsen. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39:262–267, 1992.

    Article  CAS  PubMed  Google Scholar 

  13. Kallel, F., and J. Ophir. A least-squares strain estimator for elastography. Ultrason. Imaging 19:195–208, 1997.

    Article  CAS  PubMed  Google Scholar 

  14. Kennedy, B. F., X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson. In vivo three-dimensional optical coherence elastography. Opt. Express 19:6623, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Larsson, M., F. Kremer, B. Heyde, L. A. Brodin, and J. D’Hooge. Ultrasound-based Speckle Tracking for 3D Strain estimation of the Arterial wall: an experimental validation study in a tissue mimicking phantom. IEEE International Ultrasonics Symposium. IUS 2011, pp. 725–728, 2011.

  16. Liu, L., and E. F. Morgan. Accuracy and precision of digital volume correlation in quantifying displacements and strains in trabecular bone. J. Biomech. 40:3516–3520, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lopata, R. G., H. H. Hansen, M. M. Nillesen, J. M. Thijssen, and C. L. De Korte. Comparison of one-dimensional and two-dimensional least-squares strain estimators for phased array displacement data. Ultrason. Imaging 31:1–16, 2009.

    Article  PubMed  Google Scholar 

  18. Lopata, R. G. P. 2D and 3D Ultrasound Strain Imaging: Methods and In Vivo Applications. PhD dissertation, Radboud University Nijmegen, 2010.

  19. Morris, H. J., J. Tang, B. Cruz Perez, X. Pan, R. T. Hart, P. A. Weber, and J. Liu. Correlation between biomechanical responses of posterior sclera and IOP elevations during micro intraocular volume change. Invest. Ophthalmol. Vis. Sci. 54:7215–7222, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Norman, R. E., J. G. Flanagan, I. A. Sigal, S. M. Rausch, I. Tertinegg, and C. R. Ethier. Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma. Exp. Eye Res. 93:4–12, 2011.

    Article  CAS  PubMed  Google Scholar 

  21. Palko, J. R., X. Pan, and J. Liu. Dynamic testing of regional viscoelastic behavior of canine sclera. Exp. Eye Res. 93:825–832, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Palko, J. R., J. Tang, B. Cruz Perez, X. Pan, and J. Liu. Spatially heterogeneous corneal mechanical responses before and after riboflavin-ultraviolet-A crosslinking. J. Cataract. Refract. Surg. 40:1021–1031, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Park, H. Y., K. I. Lee, K. Lee, H. Y. Shin, and C. K. Park. Torsion of the optic nerve head is a prominent feature of normal-tension glaucoma. Invest. Ophthalmol. Vis. Sci. 56:156–163, 2015.

    Article  Google Scholar 

  24. Pijanka, J. K., B. Coudrillier, K. Ziegler, T. Sorensen, K. M. Meek, T. D. Nguyen, H. A. Quigley, and C. Boote. Quantitative mapping of collagen fiber orientation in non-glaucoma and glaucoma posterior human sclerae. Investig. Opthalmol. Vis. Sci. 53:5258, 2012.

    Article  CAS  Google Scholar 

  25. Quigley, H. A. Open-angle glaucoma. N. Engl. J. Med. 328:1097–1106, 1993.

    Article  CAS  PubMed  Google Scholar 

  26. Schultz, D. S., J. C. Lotz, S. M. Lee, M. L. Trinidad, and J. M. Stewart. Structural factors that mediate scleral stiffness. Invest. Ophthalmol. Vis. Sci. 49:4232–4236, 2008.

    Article  PubMed  Google Scholar 

  27. Sigal, I. A., J. G. Flanagan, and C. R. Ethier. Factors influencing optic nerve head biomechanics. Invest. Ophthalmol. Vis. Sci. 46:4189–4199, 2005.

    Article  PubMed  Google Scholar 

  28. Skovoroda, A. R., S. Y. Emelianov, M. A. Lubinski, A. P. Sarvazyan, and M. O’Donnell. Theoretical analysis and verification of ultrasound displacement and strain imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 41:302–313, 1994.

    Article  Google Scholar 

  29. Srinivasan, S., R. Righetti, and J. Ophir. Trade-offs between the axial resolution and the signal-to-noise ratio in elastography. Ultrasound Med. Biol. 29:847–866, 2003.

    Article  CAS  PubMed  Google Scholar 

  30. Tang, J., and J. Liu. Ultrasonic measurement of scleral cross-sectional strains during elevations of intraocular pressure: method validation and initial results in posterior porcine sclera. J. Biomech. Eng. 134:091007, 2012.

    Article  PubMed  Google Scholar 

  31. Varghese, T., and J. Ophir. A theoretical framework for performance characterization of elastography: the strain filter. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44:164–172, 1997.

    Article  CAS  PubMed  Google Scholar 

  32. Vurgese, S., S. Panda-Jonas, and J. B. Jonas. Scleral thickness in human eyes. PLoS ONE 7:e29692, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yoo, L., H. Kim, V. Gupta, and J. L. Demer. Quasilinear viscoelastic behavior of bovine extraocular muscle tissue. Invest. Ophthalmol. Vis. Sci. 50:3721–3728, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by NIH grants RO1EY020929 and RO1EY020929-S1. The authors gratefully acknowledge Paul A. Weber, MD and Joel R. Palko, MD for helpful discussions. This work was also supported in part by an allocation of computing time from the Ohio Supercomputer Center (OSC). The OSC staff is acknowledged for their help with implementing the parallel execution of the cross-correlation algorithms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz Perez, B., Pavlatos, E., Morris, H.J. et al. Mapping 3D Strains with Ultrasound Speckle Tracking: Method Validation and Initial Results in Porcine Scleral Inflation. Ann Biomed Eng 44, 2302–2312 (2016). https://doi.org/10.1007/s10439-015-1506-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1506-1

Keywords

Navigation