Skip to main content
Log in

Structural Mechanics Predictions Relating to Clinical Coronary Stent Fracture in a 5 Year Period in FDA MAUDE Database

  • Medical Stents: State of the Art and Future Directions
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Endovascular stents are the mainstay of interventional cardiovascular medicine. Technological advances have reduced biological and clinical complications but not mechanical failure. Stent strut fracture is increasingly recognized as of paramount clinical importance. Though consensus reigns that fractures can result from material fatigue, how fracture is induced and the mechanisms underlying its clinical sequelae remain ill-defined. In this study, strut fractures were identified in the prospectively maintained Food and Drug Administration’s (FDA) Manufacturer and User Facility Device Experience Database (MAUDE), covering years 2006–2011, and differentiated based on specific coronary artery implantation site and device configuration. These data, and knowledge of the extent of dynamic arterial deformations obtained from patient CT images and published data, were used to define boundary conditions for 3D finite element models incorporating multimodal, multi-cycle deformation. The structural response for a range of stent designs and configurations was predicted by computational models and included estimation of maximum principal, minimum principal and equivalent plastic strains. Fatigue assessment was performed with Goodman diagrams and safe/unsafe regions defined for different stent designs. Von Mises stress and maximum principal strain increased with multimodal, fully reversed deformation. Spatial maps of unsafe locations corresponded to the identified locations of fracture in different coronary arteries in the clinical database. These findings, for the first time, provide insight into a potential link between patient adverse events and computational modeling of stent deformation. Understanding of the mechanical forces imposed under different implantation conditions may assist in rational design and optimal placement of these devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Aoki, J., G. Nakazawa, K. Tanabe, A. Hoye, H. Yamamoto, T. Nakayama, et al. Incidence and clinical impact of coronary stent fracture after sirolimus-eluting stent implantation. Catheter Cardiovasc. Interv. 15(69):380–386, 2007.

    Article  Google Scholar 

  2. Argente dos Santos, H. A. F., F. Auricchio, and M. Conti. Fatigue life assessment of cardiovascular balloon-expandable stents: a two-scale plasticity—damage model approach. J. Mech. Behav. Biomed. Mater. 15:78–92, 2012.

    Article  CAS  PubMed  Google Scholar 

  3. Auricchio, F., A. Constantinescu, M. Conti, and G. Scalet. A computational approach for the lifetime prediction of cardiovascular balloon-expandable stents. Int. J. Fatigue 75:69–79, 2015.

    Article  CAS  Google Scholar 

  4. Azaouzi, M., A. Makradi, J. Petit, S. Belouettar, and O. Polit. On the numerical investigation of cardiovascular balloon-expandable stent using finite element method. Comput. Mater. Sci. 79:326–335, 2013.

    Article  CAS  Google Scholar 

  5. Barrera, O., A. Makradi, M. Abbadi, M. Azaouzi, and S. Belouettar. On high-cycle fatigue of 316L stents. Comput. Methods Biomech. Biomed. Eng. 17:239–250, 2014.

    Article  Google Scholar 

  6. CFR—Code of Federal Regulations Title 21 [Internet]. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=803.19 [cited 2014 Jun 4].

  7. Choe, H., G. Hur, J. H. Doh, J. Namgung, S. Y. Lee, K. T. Park, et al. A case of very late stent thrombosis facilitated by drug eluting stent fracture: comparative images before and after stent fracture detected by 64-multidetector computed tomography. Int. J. Cardiol. 17(133):e125–128, 2009.

    Article  Google Scholar 

  8. Choi G. In vivo quantification of arterial deformation due to pulsatile and non-pulsatile forces: implications for the design of stents and stent-grafts [Internet], 2009. http://gradworks.umi.com/33/82/3382704.html [cited 2014 Jun 4].

  9. Choi, G., C. P. Cheng, N. M. Wilson, and C. A. Taylor. Methods for quantifying three-dimensional deformation of arteries due to pulsatile and nonpulsatile forces: implications for the design of stents and stent grafts. Ann. Biomed. Eng. 37:14–33, 2009.

    Article  PubMed  Google Scholar 

  10. Chung, W.-S., C.-S. Park, K.-B. Seung, P.-J. Kim, J.-M. Lee, B.-K. Koo, et al. The incidence and clinical impact of stent strut fractures developed after drug-eluting stent implantation. Int. J. Cardiol. 25(125):325–331, 2008.

    Article  Google Scholar 

  11. Conway, C., J. P. McGarry, and P. E. McHugh. Modelling of atherosclerotic plaque for use in a computational test-bed for stent angioplasty. Ann. Biomed. Eng. 11(42):2425–2439, 2014.

    Article  Google Scholar 

  12. Conway, C., F. Sharif, J. McGarry, and P. McHugh. A computational test-bed to assess coronary stent implantation mechanics using a population-specific approach. Cardiovasc. Eng. Technol. 3:1–14, 2012.

    Article  Google Scholar 

  13. Crossland B. Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel. In: Proceedings of International Conference on Fatigue of Metals, Institution of Mechanical Engineering, Vol. 138, London, 1956.

  14. Dang-Van, K. Macro-micro approach in high-cycle multiaxial fatigue. In: Advances in multiaxial fatigue, edited by D. L. McDowell, and R. Ellis. Philadelphia: ASTM International, 1993, pp. 120–130.

    Chapter  Google Scholar 

  15. Ding, Z., H. Zhu, and M. H. Friedman. Coronary artery dynamics in vivo. Ann. Biomed. Eng. 1(30):419–429, 2002.

    Article  Google Scholar 

  16. Dordoni, E., A. Meoli, W. Wu, G. Dubini, F. Migliavacca, G. Pennati, et al. Fatigue behaviour of Nitinol peripheral stents: the role of plaque shape studied with computational structural analyses. Med. Eng. Phys. 36:842–849, 2014.

    Article  PubMed  Google Scholar 

  17. Duda, S. H., B. Pusich, G. Richter, P. Landwehr, V. L. Oliva, A. Tielbeek, et al. Sirolimus-eluting stents for the treatment of obstructive superficial femoral artery disease six-month results. Circulation 17(106):1505–1509, 2002.

    Article  Google Scholar 

  18. Early, M., and D. J. Kelly. The consequences of the mechanical environment of peripheral arteries for nitinol stenting. Med Biol Eng Comput 49:1279–1288, 2011.

    Article  PubMed  Google Scholar 

  19. Early, M., C. Lally, P. J. Prendergast, and D. J. Kelly. Stresses in peripheral arteries following stent placement: a finite element analysis. Comput. Methods Biomech. Biomed. Eng. 12:25–33, 2009.

    Article  Google Scholar 

  20. Halwani, D. O., P. G. Anderson, B. C. Brott, A. S. Anayiotos, and J. E. Lemons. The role of vascular calcification in inducing fatigue and fracture of coronary stents. J. Biomed. Mater. Res. B Appl. Biomater. 1(100B):292–304, 2012.

    Article  Google Scholar 

  21. Harewood, F. J., and P. E. McHugh. Modeling of size dependent failure in cardiovascular stent struts under tension and bending. Ann. Biomed. Eng. 35:1539–1553, 2007.

    Article  CAS  PubMed  Google Scholar 

  22. Hsiao, H.-M., and M.-T. Yin. An intriguing design concept to enhance the pulsatile fatigue life of self-expanding stents. Biomed. Microdev. 16:133–141, 2014.

    Article  CAS  Google Scholar 

  23. Iida, O., S. Nanto, M. Uematsu, T. Morozumi, J. Kotani, M. Awata, et al. Effect of exercise on frequency of stent fracture in the superficial femoral artery. Am. J. Cardiol. 15(98):272–274, 2006.

    Article  Google Scholar 

  24. Ino, Y., Y. Toyoda, A. Tanaka, S. Ishii, Y. Kusuyama, T. Kubo, et al. Predictors and prognosis of stent fracture after sirolimus-eluting stent implantation. Circ. J. 73:2036–2041, 2009.

    Article  PubMed  Google Scholar 

  25. Jaff, M., M. Dake, J. Pompa, G. Ansel, and T. Yoder. Standardized evaluation and reporting of stent fractures in clinical trials of noncoronary devices. Catheter Cardiovasc. Interv. 1(70):460–462, 2007.

    Article  Google Scholar 

  26. LaDisa, J. F., L. E. Olson, H. A. Douglas, D. C. Warltier, J. R. Kersten, and P. S. Pagel. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling. Biomed. Eng. OnLine 16(5):40, 2006.

    Article  Google Scholar 

  27. Lally, C., F. Dolan, and P. J. Prendergast. Cardiovascular stent design and vessel stresses: a finite element analysis. J. Biomech. 38:1574–1581, 2005.

    Article  CAS  PubMed  Google Scholar 

  28. Li, J., Q. Luo, Z. Xie, Y. Li, and Y. Zeng. Fatigue life analysis and experimental verification of coronary stent. Heart Vessels 1(25):333–337, 2010.

    Article  CAS  Google Scholar 

  29. Liao, R., S.-Y. J. Chen, J. C. Messenger, B. M. Groves, J. E. B. Burchenal, and J. D. Carroll. Four-dimensional analysis of cyclic changes in coronary artery shape. Catheter Cardiovasc. Interv. 1(55):344–354, 2002.

    Article  Google Scholar 

  30. Ling, A. J., P. Mwipatayi, T. Gandhi, and K. Sieunarine. Stenting for carotid artery stenosis: fractures, proposed etiology and the need for surveillance. J. Vasc. Surg. 1(47):1220–1226, 2008.

    Article  Google Scholar 

  31. Marrey, R. V., R. Burgermeister, R. B. Grishaber, and R. O. Ritchie. Fatigue and life prediction for cobalt-chromium stents: a fracture mechanics analysis. Biomaterials 27:1988–2000, 2006.

    Article  CAS  PubMed  Google Scholar 

  32. McGarry, J. P., B. P. O’Donnell, P. E. McHugh, and J. G. McGarry. Analysis of the mechanical performance of a cardiovascular stent design based on micromechanical modelling. Comput. Mater. Sci. 31:421–438, 2004.

    Article  Google Scholar 

  33. Meoli, A., E. Dordoni, L. Petrini, F. Migliavacca, G. Dubini, and G. Pennati. Computational modelling of in vitro set-ups for peripheral self-expanding nitinol stents: the importance of stent-wall interaction in the assessment of the fatigue resistance. Cardiovasc. Eng. Technol. 1(4):474–484, 2013.

    Article  Google Scholar 

  34. Messenger, J. C., S. Y. Chen, J. D. Carroll, J. E. Burchenal, K. Kioussopoulos, and B. M. Groves. 3D coronary reconstruction from routine single-plane coronary angiograms: clinical validation and quantitative analysis of the right coronary artery in 100 patients. Int. J. Card. Imaging 16:413–427, 2000.

    Article  CAS  PubMed  Google Scholar 

  35. Min, P.-K., Y.-W. Yoon, and H. Moon Kwon. Delayed strut fracture of sirolimus-eluting stent: a significant problem or an occasional observation? Int. J. Cardiol. 26(106):404–406, 2006.

    Article  Google Scholar 

  36. Morlacchi, S., G. Pennati, L. Petrini, G. Dubini, and F. Migliavacca. Influence of plaque calcifications on coronary stent fracture: a numerical fatigue life analysis including cardiac wall movement. J. Biomech. 3(47):899–907, 2014.

    Article  Google Scholar 

  37. Nakazawa, G., A. V. Finn, M. Vorpahl, E. Ladich, R. Kutys, I. Balazs, et al. Incidence and predictors of drug-eluting stent fracture in human coronary artery: a pathologic analysis. J. Am. Coll. Cardiol. 17(54):1924–1931, 2009.

    Article  Google Scholar 

  38. Park, M.-W., K. Chang, S. H. Her, J.-M. Lee, Y.-S. Choi, D.-B. Kim, et al. Incidence and clinical impact of fracture of drug-eluting stents widely used in current clinical practice: comparison with initial platform of sirolimus-eluting stent. J. Cardiol. 60:215–221, 2012.

    Article  PubMed  Google Scholar 

  39. Park, K. W., J. J. Park, I.-H. Chae, J.-B. Seo, H.-M. Yang, H.-Y. Lee, et al. Clinical characteristics of coronary drug-eluting stent fracture: insights from a two-center des registry. J. Korean Med. Sci. 26:53–58, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Park, J.-S., D.-G. Shin, Y.-J. Kim, G.-R. Hong, and I.-H. Cho. Acute myocardial infarction as a consequence of stent fracture and plaque rupture after sirolimus-eluting stent implantation. Int. J. Cardiol. 15(134):e79–81, 2009.

    Article  Google Scholar 

  41. Pelton, A. R., V. Schroeder, M. R. Mitchell, X.-Y. Gong, M. Barney, and S. W. Robertson. Fatigue and durability of Nitinol stents. J. Mech. Behav. Biomed. Mater. 1:153–164, 2008.

    Article  CAS  PubMed  Google Scholar 

  42. Popma, J. J., K. Tiroch, A. Almonacid, S. Cohen, D. E. Kandzari, and M. B. Leon. A qualitative and quantitative angiographic analysis of stent fracture late following sirolimus-eluting stent implantation. Am. J. Cardiol. 1(103):923–929, 2009.

    Article  Google Scholar 

  43. Scheinert, D., S. Scheinert, J. Sax, C. Piorkowski, S. Bräunlich, M. Ulrich, et al. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J. Am. Coll. Cardiol. 18(45):312–315, 2005.

    Article  Google Scholar 

  44. Serikawa, T., T. Kawasaki, H. Koga, Y. Orita, S. Ikeda, Y. Goto, et al. Late catch-up phenomenon associated with stent fracture after sirolimus-eluting stent implantation: incidence and outcome. J. Interv. Cardiol. 24:165–171, 2011.

    Article  PubMed  Google Scholar 

  45. Sianos, G., S. Hofma, J. M. R. Ligthart, F. Saia, A. Hoye, P. A. Lemos, et al. Stent fracture and restenosis in the drug-eluting stent era. Catheter Cardiovasc. Interv. 1(61):111–116, 2004.

    Article  Google Scholar 

  46. Sines, G., and G. Ohgi. Fatigue criteria under combined stresses or strains. J. Eng. Mater. Technol. 1(103):82–90, 1981.

    Article  Google Scholar 

  47. Sweeney, C. A., P. E. McHugh, J. P. McGarry, and S. B. Leen. Micromechanical methodology for fatigue in cardiovascular stents. Int. J. Fatigue 44:202–216, 2012.

    Article  CAS  Google Scholar 

  48. Sweeney, C. A., B. O’Brien, F. P. E. Dunne, P. E. McHugh, and S. B. Leen. Micro-scale testing and micromechanical modelling for high cycle fatigue of CoCr stent material. J. Mech. Behav. Biomed. Mater. 46:244–260, 2015.

    Article  CAS  PubMed  Google Scholar 

  49. Sweeney, C. A., B. O’Brien, F. P. E. Dunne, P. E. McHugh, and S. B. Leen. Strain-gradient modelling of grain size effects on fatigue of CoCr alloy. Acta Mater. 1(78):341–353, 2014.

    Article  Google Scholar 

  50. Sweeney, C. A., B. O’Brien, P. E. McHugh, and S. B. Leen. Experimental characterisation for micromechanical modelling of CoCr stent fatigue. Biomaterials 35:36–48, 2014.

    Article  CAS  PubMed  Google Scholar 

  51. Umeda, H., T. Kawai, N. Misumida, T. Ota, K. Hayashi, M. Iwase, et al. Impact of sirolimus-eluting stent fracture on 4-year clinical outcomes. Circ. Cardiovasc. Interv. 4:349–354, 2011.

    Article  CAS  PubMed  Google Scholar 

  52. Wu, W., D.-Z. Yang, M. Qi, and W.-Q. Wang. An FEA method to study flexibility of expanded coronary stents. J. Mater. Process. Technol. 12(184):447–450, 2007.

    Article  Google Scholar 

  53. Zhu, H., J. J. Warner, T. R. Gehrig, and M. H. Friedman. Comparison of coronary artery dynamics pre- and post-stenting. J. Biomech. 36:689–697, 2003.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded in part by Grants from FDA Office of Regulatory Affairs, R01 GM49039 (ERE) from the National Institute of Health, and appointment to the Research Participation Program at FDA administered by Oak Ridge Institute for Science and Education (CC).

Disclosures

Drs Choi and Taylor are employees of and have equity interest in HeartFlow, Inc. Other authors report no conflicts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Conway.

Additional information

Associate Editor Peter McHugh oversaw the review of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Everett, K.D., Conway, C., Desany, G.J. et al. Structural Mechanics Predictions Relating to Clinical Coronary Stent Fracture in a 5 Year Period in FDA MAUDE Database. Ann Biomed Eng 44, 391–403 (2016). https://doi.org/10.1007/s10439-015-1476-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1476-3

Keywords

Navigation