Skip to main content
Log in

Patient-Specific Biomechanical Modeling for Guidance During Minimally-Invasive Hepatic Surgery

  • Computational Biomechanics for Patient-Specific Applications
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

During the minimally-invasive liver surgery, only the partial surface view of the liver is usually provided to the surgeon via the laparoscopic camera. Therefore, it is necessary to estimate the actual position of the internal structures such as tumors and vessels from the pre-operative images. Nevertheless, such task can be highly challenging since during the intervention, the abdominal organs undergo important deformations due to the pneumoperitoneum, respiratory and cardiac motion and the interaction with the surgical tools. Therefore, a reliable automatic system for intra-operative guidance requires fast and reliable registration of the pre- and intra-operative data. In this paper we present a complete pipeline for the registration of pre-operative patient-specific image data to the sparse and incomplete intra-operative data. While the intra-operative data is represented by a point cloud extracted from the stereo-endoscopic images, the pre-operative data is used to reconstruct a biomechanical model which is necessary for accurate estimation of the position of the internal structures, considering the actual deformations. This model takes into account the patient-specific liver anatomy composed of parenchyma, vascularization and capsule, and is enriched with anatomical boundary conditions transferred from an atlas. The registration process employs the iterative closest point technique together with a penalty-based method. We perform a quantitative assessment based on the evaluation of the target registration error on synthetic data as well as a qualitative assessment on real patient data. We demonstrate that the proposed registration method provides good results in terms of both accuracy and robustness w.r.t. the quality of the intra-operative data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Antiga, L. and B. Ene-Iordache. Centerline computation and geometric analysis of branching tubular surfaces with application to blood vessel modeling. WSCG, 2003.

  2. Bano, J. et al. Simulation of pneumoperitoneum for laparoscopic surgery planning. In: Proceedings of the 15th MICCAI: Part I, pp. 91–98, 2012.

  3. Baraff, D. and A. Witkin. Large steps in cloth simulation. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’98, New York, NY: ACM, pp. 43–54, 1998.

  4. Boltcheva, D., M. Yvinec, and J.-D. Boissonnat. Mesh generation from 3d multi-material images. In: Proceedings of the 12th MICCAI—Volume Part II, Berlin: Springer, pp. 283–290, 2009.

  5. Bouguet, J.Y. Pyramidal implementation of the Lucas Kanade feature tracker: description of the algorithm, 2002.

  6. Clements, L.W. et al. Robust surface registration using salient anatomical features for image-guided liver surgery: algorithm and validation. Med. Phys. 35(6):2528–2540, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Courtecuisse, H., J. Allard, P. Kerfriden, S.P. Bordas, S. Cotin, and C. Duriez. Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med. Image Anal. 18(2):394–410, 2014.

    Article  PubMed  Google Scholar 

  8. Dos Santos, T.R., A. Seitel, T. Kilgus, S. Suwelack, A.-L. Wekerle, H. Kenngott, S. Speidel, H.-P. Schlemmer, H.-P. Meinzer, and T. Heimann, et al. Pose-independent surface matching for intra-operative soft-tissue marker-less registration. Med. Image Anal. 18(7):1101–1114, 2014.

    Article  PubMed  Google Scholar 

  9. Duriez, C., S. Cotin, J. Lenoir, and P. Neumann. New approaches to catheter navigation for interventional radiology simulation 1. Comput. Aided Surg. 11(6):300–308, 2006.

    Article  PubMed  CAS  Google Scholar 

  10. Elhawary, H. and A. Popovic. Robust feature tracking on the beating heart for a robotic-guided endoscope. Int J Med Robot. 7:459–468, 2010.

  11. Felippa, C.A. A study of optimal membrane triangles with drilling freedoms. CMAME 192(16–18):2125–2168, 2003.

    Google Scholar 

  12. Gauglitz, S., T. Hllerer, and M. Turk. Evaluation of interest point detectors and feature descriptors for visual tracking. Int. J. Comput. Vis. 94(3):335–360, 2011.

    Article  Google Scholar 

  13. Gower, J.C. Generalised procrustes analysis. Psychometrika 40:33–51, 1975.

    Article  Google Scholar 

  14. Haouchine, N., J. Dequidt, I. Peterlik, E. Kerrien, M.-O. Berger, and S. Cotin. Image-guided simulation of heterogeneous tissue deformation for augmented reality during hepatic surgery. In ISMAR 2013, pp. 199–208, 2013.

  15. Haouchine, N., J. Dequidt, I. Peterlik, E. Kerrien, M.-O. Berger, and S. Cotin. Towards an accurate tracking of liver tumors for augmented reality in robotic assisted surgery. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4121–4126, 2014.

  16. Haouchine, N., I. Peterlik, J. Dequidt, M. Sanz-Lopez, E. Kerrien, M.-O. Berger, and S. Cotin. Impact of soft tissue heterogeneity on augmented reality for liver surgery. IEEE TVCG 21:584– 597, 2015, accepted for publication.

  17. Hartley, R.I. and A. Zisserman. Multiple view geometry in computer vision, 2nd edn. Cambridge: Cambridge University Press, ISBN: 0521540518, 2004.

  18. Kerdok, A.E., M.P. Ottensmeyer, and R.D. Howe. Effects of perfusion on the viscoelastic characteristics of liver. J. Biomech. 39:2221–2231, 2006.

    Article  PubMed  Google Scholar 

  19. Maier-Hein, L., P. Mountney, A. Bartoli, H. Elhawary, D. Elson, A. Groch, A. Kolb, M. Rodrigues, J. Sorger, S. Speidel, and D. Stoyanov. Optical techniques for 3d surface reconstruction in computer-assisted laparoscopic surgery. Med. Image Anal. 17:974–996, 2013.

    Article  PubMed  CAS  Google Scholar 

  20. Mazza, E., A. Nava, D. Hahnloser, W. Jochum, and M. Bajka. The mechanical response of human liver and its relation to histology: An in vivo study. Med. Image Anal. 11(6):663–672, 2007.

    Article  PubMed  Google Scholar 

  21. Mikolajczyk, K. and C. Schmid. A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10):1615–1630, 2005.

    Article  PubMed  Google Scholar 

  22. Nesme, M., Y. Payan, and F. Faure. Efficient, physically plausible finite elements. In: Eurographics 2005, Short papers, August, 2005, edited by J. Dingliana and F. Ganovelli, Trinity College, Dublin, pp. 77–80, 2005.

    Google Scholar 

  23. Nguyen, B., T. Yang, F. Leong, S. Chang, and S. Ong. Patient specific biomechanical modeling of hepatic vasculature for augmented reality surgery. In: Proceedings of MIAR2008, pp. 50–57, 2008.

  24. Nicolau, S., L. Soler, D. Mutter, and J. Marescaux. Augmented reality in laparoscopic surgical oncology. Surg. Oncol. 20(3):189–201, 2011.

    Article  PubMed  Google Scholar 

  25. Oktay, O. et al. Biomechanically driven registration of pre- to intra-operative 3d images for laparoscopic surgery. In: Proceedings of the 16th MICCAI: Part II, pp. 1–9, 2013.

  26. Peterlik, I., C. Duriez, and S. Cotin. Modeling and real-time simulation of a vascularized liver tissue. In: Proceedings of the 15th MICCAI—Volume Part I, Berlin: Springer, pp. 50–57, 2012.

  27. Peterlík, I., T. Golembiovský, C. Duriez, and S. Cotin. Complete real-time liver model including glissons capsule, vascularization and parenchyma. Medicine Meets Virtual Reality 21: NextMed/MMVR21,196:312–319, 2014.

  28. Plantefeve, R. et al. Automatic alignment of pre and intraoperative data using anatomical landmarks for augmented laparoscopic liver surgery. In Biomedical Simulation, edited by F. Bello and S. Cotin, Lecture Notes in Computer Science, vol. 8789. Berlin: Springer, pp. 58–66, 2014a.

  29. Plantefeve, R., I. Peterlik, H. Courtecuisse, R. Trivisonne, J.-P. Radoux, and S. Cotin. Atlas-based transfer of boundary conditions for biomechanical simulation. In: Proceedings of the 17th MICCAI: Part III, Berlin: Springer, pp. 33–40, 2014b.

  30. Pratt, P., D. Stoyanov, M. Visentini-Scarzanella, and G.-Z. Yang. Dynamic guidance for robotic surgery using image- constrained biomechanical models. In: Proceedings of the 13th MICCAI: Part I, MICCAI’10, Berlin: Springer, pp. 77–85, 2010.

  31. Puerto-Souza, G. and G. Mariottini. Toward long-term and accurate augmented-reality display for minimally-invasive surgery. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 5384–5389, 2013.

  32. Schaerer, J., C. Casta, J. Pousin, and P. Clarysse. A dynamic elastic model for segmentation and tracking of the heart in mr image sequences. Med. Image Anal. 14(6):738–749, 2010.

    Article  PubMed  Google Scholar 

  33. Schneider, P.J. An algorithm for automatically fitting digitized curves. In: Graphics Gems, edited by A. S. Glassner, Academic Press Professional, Inc., pp. 612–626, 1990

  34. Shewchuk, J.R. An introduction to the conjugate gradient method without the agonizing pain. Technical Report, 1994.

  35. Speidel, S., S. Roehl, S. Suwelack, R. Dillmann, H. Kenngott, and B. Mueller-Stich. Intraoperative surface reconstruction and biomechanical modeling for soft tissue registration. In: Proceedings of Joint Workshop on New Technologies for Computer/Robot Assisted Surgery, 2011.

  36. Stoyanov, D. Surgical vision. Ann. Biomed. Eng. 40(2):332–345, 2012.

    Article  PubMed  Google Scholar 

  37. Su, L.-M., B.P. Vagvolgyi, R. Agarwal, C.E. Reiley, R.H. Taylor, and G D. Hager. Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3d-ct to stereoscopic video registration. Urology, 73(4):896–900, 2009.

    Article  PubMed  Google Scholar 

  38. Suwelack, S., S. Röhl, S. Bodenstedt, D. Reichard, R. Dillmann, T. dos Santos, L. Maier-Hein, M. Wagner, J. Wünscher, H. Kenngott, et al. Physics-based shape matching for intraoperative image guidance. Med. Phys. 41(11):111901, 2014.

    Article  PubMed  Google Scholar 

  39. Umale, S. Characterization and modeling of abdominal organs. PhD thesis, Strasbourg, 2012.

  40. Umale, S., S. Chatelin, N. Bourdet, C. Deck, M. Diana, P. Dhumane, L. Soler, J. Marescaux, and R. Willinger. Experimental in vitro mechanical characterization of porcine Glisson’s capsule and hepatic veins. J. Biomech. 44(9):1678–1683, 2011.

    Article  PubMed  Google Scholar 

  41. Verscheure, L., L. Peyrodie, A.-S. Dewalle, N. Reyns, N. Betrouni, S. Mordon, and M. Vermandel. Three-dimensional skeletonization and symbolic description in vascular imaging: preliminary results. Int. J. Comput. Assist. Radiol. Surg. 8(2):233–246, 2013.

    Article  PubMed  CAS  Google Scholar 

  42. Wittek, A., T. Hawkins, and K. Miller. On the unimportance of constitutive models in computing brain deformation for image-guided surgery. Biomech. Model. Mechanobiol. 8(1):77–84, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yeh, W.-C., P.-C. Li, Y.-M. Jeng, H.-C. Hsu, P.-L. Kuo, M.-L. Li, P.-M. Yang, and P. H. Lee. Elastic modulus measurements of human liver and correlation with pathology. Ultrasound Med. Biol. 28(4):467–474, 2002.

    Article  PubMed  Google Scholar 

  44. Yushkevich, P. A., J. Piven, H. C. Hazlett, R. G. Smith, S. Ho, J. C. Gee, and G. Gerig. User-guided 3d active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128, 2006.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalie Plantefève.

Additional information

Associate Editor K. A. Athanasiou oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (.mov 3281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plantefève, R., Peterlik, I., Haouchine, N. et al. Patient-Specific Biomechanical Modeling for Guidance During Minimally-Invasive Hepatic Surgery. Ann Biomed Eng 44, 139–153 (2016). https://doi.org/10.1007/s10439-015-1419-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1419-z

Keywords

Navigation