Skip to main content
Log in

Role of Animal Models in Coronary Stenting

  • Medical Stents: State of the Art and Future Directions
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Coronary angioplasty initially employed balloon dilatation only. This technique revolutionized the treatment of coronary artery disease, although outcomes were compromised by acute vessel closure, late constrictive remodeling, and restenosis due to neointimal proliferation. These processes were studied in animal models, which contributed to understanding the biology of endovascular arterial injury. Coronary stents overcome acute recoil, with improvements in the design and metallurgy since then, leading to the development of drug-eluting stents and bioresorbable scaffolds. These devices now undergo computer modeling and benchtop and animal testing before evaluation in clinical trials. Animal models, including rabbit, sheep, dog and pig are available, all with individual benefits and limitations. In smaller mammals, such as mouse and rabbit, the target for stenting is generally the aorta; whereas in larger animals, such as the pig, it is generally the coronary artery. The pig coronary stenting model is a gold-standard for evaluating safety; but insights into biomechanical properties, the biology of stenting, and efficacy in controlling neointimal proliferation can also be gained. Intra-coronary imaging modalities such as intravascular ultrasound and optical coherence tomography allow precise serial evaluation in vivo, and recent developments in genetically modified animal models of atherosclerosis provide realistic test beds for future stents and scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ali, Z. A., N. J. Alp, H. Lupton, N. Arnold, T. Bannister, Y. Hu, S. Mussa, M. Wheatcroft, D. Greaves, J. Gunn, and K. Channon. Increased in-stent stenosis in ApoE knockout mice: insights from a novel mouse model of balloon angioplasty and stenting. Arterioscler. Thromb. Vasc. Biol. 27:833–840, 2007.

    Article  CAS  PubMed  Google Scholar 

  2. Balakrishnan, B., A. R. Tsafriri, P. Seifert, A. Groothuis, C. Rogers, and E. R. Edelman. Strut position, blood flow, and drug deposition: implications for single and overlapping drug-eluting stents. Circulation 111:2958–2965, 2005.

    Article  PubMed  Google Scholar 

  3. Bauters, C., T. Meurice, M. Hamon, E. McFadden, J. M. Lablanche, and M. E. Bertrand. Mechanisms and prevention of restenosis: from experimental models to clinical practice. Cardiovasc. Res. 31:835–846, 1996.

    Article  CAS  PubMed  Google Scholar 

  4. Caiazzo, A., D. Evans, J.-L. Falcone, J. Hegewald, E. Lorenz, B. Stahl, D. Wang, J. Bernsdorf, B. Chopard, J. Gunn, R. Hose, M. Krafczyk, P. Lawford, R. Smallwood, D. Walker, and A. Hoekstra. A complex automata approach for in-stent restenosis: two-dimensional multiscale modeling and simulations. J Comput. Sci. 2:9–17, 2011.

    Article  Google Scholar 

  5. Caro, C. G., A. Seneviratne, K. B. Heraty, C. Monaco, M. G. Burke, R. Krams, C. C. Chang, P. Gilson, and G. Coppola. Intimal hyperplasia following implantation of helical centreline and straight centreline stents in common carotid arteries in healthy pigs: influence of intraluminal flow. J. R. Soc. Interface 10(89):20130578, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Carrozza, J. P., S. E. Hosley, D. J. Cohen, and D. S. Baim. In vivo assessment of stent expansion and recoil in normal porcine coronary arteries: differential outcome by stent design. Circulation 100:756–760, 1999.

    Article  PubMed  Google Scholar 

  7. Carter, A. J., M. Aggarwal, G. A. Kopia, F. Tio, T. S. Tsao, R. Kolata, A. C. Yeung, G. Llanos, J. Dooley, and R. Falotico. Long term effects of polymer-based, slow release, sirolimus-eluting stents in a porcine coronary model. Cardiovasc. Res. 63:617–624, 2004.

    Article  CAS  PubMed  Google Scholar 

  8. Carter, A. J., J. R. Laird, A. Farb, W. Kufs, D. C. Wortham, and R. Virmani. Morphologic characteristics of lesion formation and time course of smooth muscle cell proliferation in a porcine proliferative restenosis model. J. Am. Coll. Cardiol. 24:1398–1405, 1994.

    Article  CAS  PubMed  Google Scholar 

  9. Carter, A. J., J. R. Laird, W. M. Kufs, L. Bailey, T. G. Hoopes, T. Reeves, A. Farb, and R. Virmani. Coronary stenting with a novel stainless steel balloon-expandable stent: determinants of neointimal formation and changes in arterial geometry after placement in an atherosclerotic model. J. Am. Coll. Cardiol. 27:1270–1277, 1996.

    Article  CAS  PubMed  Google Scholar 

  10. Carter, A. J., D. Scott, D. Rahdert, L. Bailey, J. De Vries, K. Ayerdi, T. Turnlund, R. Jones, R. Virmani, and T. A. Fischell. Stent design favourably influences the vascular response in normal porcine coronary arteries. J. Invasive Cardiol. 11:127–134, 1999.

    CAS  PubMed  Google Scholar 

  11. Chamberlain, J., M. Wheatcroft, N. Arnold, H. Lupton, D. C. Crossman, J. Gunn, and S. Francis. A novel mouse model of in situ stenting. Cardiovasc. Res. 85:38–44, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Curtin, A. E., and L. Zhou. An agent-based model of the response to angioplasty and bare metal stent deployment in an atherosclerotic blood vessel. PLoS One 9:e9441, 2014.

    Article  Google Scholar 

  13. De Meyer, S. F., S. Staelens, P. N. Badenhorst, H. Pieters, S. Lamprecht, J. Roodt, S. Janssens, M. Meiring, K. Vanhoorelbeke, A. Bruwer, S. Brown, and H. Deckmyn. Coronary artery in-stent stenosis persists despite inhibition of the von Willebrand factor-collagen interaction in baboons. Thromb. Haemost. 98:1343–1349, 2007.

    PubMed  Google Scholar 

  14. Dean, C. J., A. C. Morton, N. D. Arnold, D. R. Hose, D. C. Crossman, and J. Gunn. Relative importance of the components of stent geometry to stretch-induced in-stent neointima formation. Heart 91:1603–1604, 2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Finn, A. V., H. K. Gold, A. Tang, D. K. Weber, T. N. Wight, A. Clermont, R. Virmani, and F. D. Kolodgie. A novel rat model of carotid artery stenting for the understanding of restenosis in metabolic diseases. J. Vasc. Res. 39:414–425, 2002.

    Article  CAS  PubMed  Google Scholar 

  16. Gallo, R., A. Padurean, T. Jayaraman, S. Marx, M. Roque, S. Adelman, J. Chesebro, J. Fallon, V. Fuster, A. Marks, and J. J. Badimon. Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle. Circulation 99:2164–2170, 1999.

    Article  CAS  PubMed  Google Scholar 

  17. Garasic, J. M., E. R. Edelman, J. C. Squire, P. Seifert, M. S. Williams, and C. Rogers. Stent and artery geometry determine intimal thickening independent of arterial injury. Circulation 101:812–818, 2000.

    Article  CAS  PubMed  Google Scholar 

  18. Grinstead, W. C., G. P. Rodgers, W. Mazur, B. A. French, D. Cromeens, C. Van Pelt, S. M. West, and A. E. Raizner. Comparison of three porcine restenosis models: the relative importance of hypercholesterolemia, endothelial abrasion, and stenting. Coron. Art. Dis. 5:425–434, 1994.

    Article  CAS  Google Scholar 

  19. Grüntzig, A., H. H. Riedhammer, M. Turina, and W. Rutishauser. A new method for the percutaneous dilation of coronary stenoses in animal experiment. Verh. Dtsch. Ges. Kreislaufforsch. 42:282–285, 1976.

    Article  PubMed  Google Scholar 

  20. Gunn, J., K. H. Chan, N. Arnold, L. Shepherd, D. Cumberland, and D. Crossman. Coronary artery stretch vs. deep injury in the development of in-stent neointima. Heart 88:401–405, 2002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Gupta, G. K., K. Dhar, M. G. Del Core, W. J. Hunter, 3rd, G. I. Hatzoudis, and D. K. Agrawal. Suppressor of cytokine signaling-3 and intimal hyperplasia in porcine coronary arteries following coronary intervention. Exp. Mol. Pathol. 91(1):346–352, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hamamdzic, D., and R. L. Wilensky. Porcine models of accelerated coronary atherosclerosis: role of diabetes mellitus and hypercholesterolemia. J. Diabetes Res. 2013:761415, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Hehrlein, C., M. Zimmermann, J. Pill, J. Metz, W. Kuebler, and E. von Hodenberg. The role of elastic recoil after balloon angioplasty of rabbit arteries and its prevention by stent implantation. Eur. Heart J. 15:277–280, 1994.

    Article  CAS  PubMed  Google Scholar 

  24. Heublein, B., R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, and A. Haverich. Biocorrosion of Magnesium alloys: a new principle in cardiovascular implant technology? Heart 89:651–656, 2003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Hong, M. K., R. Beyar, R. Kornowski, F. O. Tio, O. Bramwell, and M. B. Leon. Acute and chronic effects of self-expanding nitinol stents in porcine coronary arteries. Coron. Art. Dis. 8:45–48, 1997.

    Article  CAS  Google Scholar 

  26. Iqbal, J., J. Gunn, and P. W. Serruys. Coronary stents: historical development, current status and future directions. Br. Med. Bull. 106:193–211, 2013.

    Article  CAS  PubMed  Google Scholar 

  27. Kelly, D., A. Morton, N. Arnold, J. Mecinovic, C. Schofield, H. Lupton, K. Al-Lamee, D. Crossman, J. Gunn, and A. Gershlick. Activation of hypoxia-inducible factor by di-methyl oxalyl glycine (DMOG) increases neovascularisation but not functional vascular supply within ischemic myocardium in a porcine coronary artery occlusion model. J. Clin. Exp. Cardiol. 2:8, 2011.

    Article  Google Scholar 

  28. Krupski, W. C., A. Bass, A. B. Kelly, U. M. Marzec, S. R. Hanson, and L. A. Harker. Heparin-resistant thrombus formation by endovascular stents in baboons. Interruption by a synthetic antithrombin. Circulation 82:570–577, 1990.

    Article  CAS  Google Scholar 

  29. LaDisa, J. F., LE Olson, H. A. Douglas, D. C. Warltier, J. R. Kersten, and P. S. Pagel. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modelling. Biomed. Eng. Online 5:40, 2006.

    Article  PubMed  Google Scholar 

  30. LaDisa, J. F., L. E. Olson, I. Guler, D. A. Hettrick, S. H. Audi, J. R. Kersten, D. C. Warltier, and P. S. Pagel. Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. J. Appl. Physiol. 97:424–430, 2004.

    Article  PubMed  Google Scholar 

  31. Lambert, T. L., V. Dev, E. Rechavia, J. S. Forrester, F. Litvack, and N. L. Eigler. Localized arterial wall drug delivery from a polymer coated removable metallic stent. Kinetics, distribution, and bioactivity of forskolin. Circulation 90:1003–1011, 1994.

    Article  CAS  PubMed  Google Scholar 

  32. Lane, J. P., L. E. Perkins, A. J. Sheehy, E. J. Pacheco, M. P. Frie, B. J. Lambert, R. J. Rapoza, and R. Virmani. Lumen gain and restoration of pulsatility after implantation of a bioresorbable vascular scaffold in porcine coronary arteries. J. Am. Coll. Cardiol. Cardiovasc. Intervent. 7:688–695, 2014.

    Article  Google Scholar 

  33. Langeveld, B., A. J. Roks, R. A. Tio, A. J. van Boven, J. J. van der Want, R. H. Henning, H. M. van Beusekom, W. J. van der Giessen, F. Zijlstra, and W. H. van Gilst. Rat abdominal aorta stenting: a new and reliable small animal model for in-stent restenosis. J. Vasc. Res. 41:377–386, 2004.

    Article  PubMed  Google Scholar 

  34. Lim, D., S. K. Cho, W. P. Park, A. Kristensson, J. Y. Ko, S. T. Al-Hassani, and H. S. Kim. Suggestion of potential stent design parameters to reduce restenosis risk driven by foreshortening or dogboning due to non-uniform balloon-stent expansion. Ann. Biomed. Eng. 36:1118–1129, 2008.

    Article  PubMed  Google Scholar 

  35. Malik, N., J. Gunn, C. Holt, L. Shepherd, S. Francis, C. Newman, D. Crossman, and D. Cumberland. Intravascular stents: a new technique for tissue processing for histology, immunohistochemistry and transmission electron microscopy. Heart 80:509–516, 1998.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Morlacchi, S., B. Keller, P. Arcangeli, M. Balzan, F. Migliavacca, G. Dubini, J. Gunn, N. Arnold, A. Narracott, D. Evans, and P. Lawford. Hemodynamics and in-stent restenosis: micro-CT images, histology, and computer simulations. Ann. Biomed. Eng. 39:2615–2626, 2011.

    Article  PubMed  Google Scholar 

  37. Onuma, Y., P. W. Serruys, L. E. Perkins, T. Okamura, N. Gonzalo, H. M. Garcia-Garcia, E. Regar, M. Kamberi, J. C. Powers, R. Rapoza, H. van Beusekom, W. van der Giessen, and R. Virmani. Intracoronary optical coherence tomography and histology at 1 month and 2, 3 and 4 years after implantation of everolimus-eluting bioresorbable vascular scaffolds in a porcine coronary artery model. Circulation 122:2288–2300, 2010.

    Article  CAS  PubMed  Google Scholar 

  38. Raina, T., J. Iqbal, N. Arnold, H. Moore, B. Aflatoonian, J. Walsh, S. Whitehouse, K. Al-Lamee, S. Francis, and J. Gunn. Coronary stents seeded with human trophoblastic endovascular progenitor cells show accelerated strut coverage without excessive neointimal proliferation in a porcine model. EuroIntervention 10:709–716, 2014.

    Article  PubMed  Google Scholar 

  39. Robinson, K. A., G. S. Roubin, R. J. Siegel, A. J. Black, R. P. Apkarian, and S. B. King. Intra-arterial stenting in the atherosclerotic rabbit. Circulation 78:646–653, 1988.

    Article  CAS  PubMed  Google Scholar 

  40. Rodriguez-Menocal, L., Y. Wei, S. M. Pham, M. St-Pierre, S. Li, K. Webster, P. Goldschmidt-Clermont, and R. I. Vazquez-Padron. A novel mouse model of in-stent restenosis. Atherosclerosis 209:359–366, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Rogers, C., and E. R. Edelman. Endovascular stent design dictates experimental restenosis and thrombosis. Circulation 91:2995–3001, 1995.

    Article  CAS  PubMed  Google Scholar 

  42. Rogers, C., D. Y. Tseng, J. C. Squire, and E. R. Edelman. Balloon-artery interactions during stent placement: a finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury. Circ. Res. 84:378–383, 1999.

    Article  CAS  PubMed  Google Scholar 

  43. Roubin, G. S., K. A. Robinson, S. B. King, C. Gianturco, A. J. Black, J. E. Brown, R. J. Siegel, and J. S. Douglas. Early and late results of intracoronary arterial stenting after coronary angioplasty in dogs. Circulation 76:891–897, 1987.

    Article  CAS  PubMed  Google Scholar 

  44. Schatz, R. A., J. C. Palmaz, F. O. Tio, F. Garcia, O. Garcia, and S. R. Reuter. Balloon-expandable intracoronary stents in the adult dog. Circulation 76:450–457, 1987.

    Article  CAS  PubMed  Google Scholar 

  45. Schulz, C., R. A. Herrmann, C. Beilharz, J. Pasquantonio, and E. Alt. Coronary stent symmetry and vascular injury determine experimental restenosis. Heart 83:462–467, 2000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Schwartz, R. S., E. Edelman, R. Virmani, A. Carter, J. F. Granada, G. L. Kaluza, N. A. F. Chronos, K. A. Robinson, R. Waksman, J. Weinberger, G. J. Wilson, and R. L. Wilensky. Drug eluting stents in preclinical studies. Circ. Cardiovasc. Intervent. 1:143–153, 2008.

    Article  Google Scholar 

  47. Schwartz, R. S., K. C. Huber, J. G. Murphy, W. D. Edwards, A. R. Camrud, R. E. Vlietstra, and D. R. Holmes. Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model. J. Am. Coll. Cardiol. 19:267–274, 1992.

    Article  CAS  PubMed  Google Scholar 

  48. Sigwart, U., J. Puel, V. Mirkovitch, F. Joffre, and L. Kappenberger. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N. Engl. J. Med. 316:701–706, 1987.

    Article  CAS  PubMed  Google Scholar 

  49. Sousa, J. E., M. A. Costa, A. C. Abizaid, A. S. Abizaid, F. Feres, I. M. Pinto, A. C. Seixas, R. Staico, L. A. Mattos, A. G. Sousa, R. Falotico, J. Jaeger, J. J. Popma, and P. W. Serruys. Lack of neointimal proliferation after implantation of sirolimus-coated stents in human coronary arteries. Circulation 103:192–195, 2001.

    Article  CAS  PubMed  Google Scholar 

  50. Suzuki, T., G. Kopia, S. Hayashi, L. R. Bailey, G. Llanos, R. Wilensky, B. D. Klugherz, G. Papandreou, P. Narayan, M. B. Leon, A. C. Yeung, F. Tio, P. S. Tsao, R. Falotico, and A. J. Carter. Stent-based sirolimus therapy reduces neointimal formation in a porcine coronary model. Circulation 104:1188–1193, 2001.

    Article  CAS  PubMed  Google Scholar 

  51. Tearney, G. J., I. K. Jang, D. H. Kang, H. T. Aretz, S. L. Houser, T. J. Brady, K. Schlendorf, M. Shishkov, and B. E. Bouma. Porcine coronary imaging in vivo by optical coherence tomography. Acta Cardiol. 55:233–237, 2000.

    Article  CAS  PubMed  Google Scholar 

  52. Thorpe, P. E., W. J. Hunter, 3rd, X. X. Zhan, P. S. Dovgan, and D. K. Agrawal. A noninjury, diet-induced swine model of atherosclerosis for cardiovascular-interventional research. Angiology 47(9):849–857, 1996.

    Article  CAS  PubMed  Google Scholar 

  53. Timmins, L. H., M. W. Miller, F. J. Clubb, and J. E. Moore. Increased artery wall stress post-stenting leads to greater intimal thickening. Lab. Invest. 91:955–967, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Tominaga, R., H. E. Kambic, H. Emoto, H. Harasaki, C. Sutton, and J. Hollman. Effects of design geometry of intravascular endoprostheses on stenosis rate in normal rabbits. Am. Heart J. 123:21–28, 1992.

    Article  CAS  PubMed  Google Scholar 

  55. US Department of Health and Human Services Food and Drug Administration. Guidance for Industry: Coronary Drug-Eluting Stents - Nonclinical and Clinical Studies. www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM072193.pdf. 2008.

  56. Van der Giessen, W. J., P. W. Serruys, L. J. van Woerkens, K. J. Beatt, W. J. Visser, J. F. Jongkind, R. H. van Bremen, E. Ridderhof, H. van Loon, and L. K. Soei. Arterial stenting with self-expandable and balloon-expandable endoprostheses. Int J. Card. Imaging 5:163–171, 1990.

    Article  PubMed  Google Scholar 

  57. Van der Giessen, W. J., C. J. Slager, H. M. van Beusekom, D. S. van Ingen Schenau, R. A. Huijts, J. C. Schuurbiers, W. J. de Klein, P. W. Serruys, and P. D. Verdouw. Development of a polymer endovascular prosthesis and its implantation in porcine arteries. J. Interv. Cardiol. 5:175–185, 1992.

    Article  PubMed  Google Scholar 

  58. Van der Heiden, K., F. J. Gijssen, A. Narracott, S. Hsaio, I. Halliday, J. Gunn, J. J. Wentzel, and P. C. Evans. The effects of stenting on shear stress: relevance to endothelial injury and repair. Cardiovasc. Res. 99:269–275, 2013.

    Article  PubMed  Google Scholar 

  59. Vorpahl, M., J. R. Foerst, M. Kjelm, A. V. Kaplan, R. Virmani, and T. Ball. The complementary role of microCT and histopathology in characterizing the natural history of stented arteries. Expert Rev. Cardiovasc. Ther. 9:939–948, 2011.

    Article  PubMed  Google Scholar 

  60. Wentzel, J. J., F. J. Gijssen, N. Stergiopulos, P. W. Serruys, C. J. Slager, and R. Krams. Shear stress, vascular remodelling and neointimal formation. J. Biomech. 36:681–688, 2003.

    Article  PubMed  Google Scholar 

  61. Wentzel, J. J., D. M. Whelan, W. J. van der Giessen, H. M. van Beusekom, I. Andhyiswara, P. W. Serruys, C. J. Slager, and R. Krams. Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. J. Biomech. 33:1287–1295, 2000.

    Article  CAS  PubMed  Google Scholar 

  62. Yoon, H. J., H. Y. Song, J. H. Kim, K. S. Hong, Y. J. Kim, H. G. Park, and D. K. Kim. Role of IN-1233 in the prevention of neointimal hyperplasia after stent placement in a rat artery model. J. Vasc. Interv. Radiol. 22:1321–1328, 2011.

    Article  PubMed  Google Scholar 

  63. Zarins, C. K., and C. A. Taylor. Endovascular device design in the future: transformation from trial and error to computational design. J. Endovasc. Ther. 16(1):I12–I21, 2009.

    PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Nadine Arnold, for her veterinary and laboratory skills; and to the following for funding our animal work: British Heart Foundation, Department of Trade and Industry, Medical Research Council, Sheffield Hospitals Charitable Trust, Sir Jules Thorn Charitable Trust.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Gunn.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, J., Chamberlain, J., Francis, S.E. et al. Role of Animal Models in Coronary Stenting. Ann Biomed Eng 44, 453–465 (2016). https://doi.org/10.1007/s10439-015-1414-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1414-4

Keywords

Navigation