Skip to main content
Log in

In vivo Evaluation of Cenderitide-Eluting Stent (CES) II

  • Medical Stents: State of the Art and Future Directions
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The use of drug-eluting coronary stents has led to significant reduction in in-stent restenosis (ISR), but led to delayed endothelialization, necessitating the prolonged use of expensive anti-thrombotic drugs with their side-effects. Cenderitide (CD-NP) is a novel anti-proliferative chimeric peptide of semi-endothelial origin. Our previous work in vitro has demonstrated; that the smooth muscle cells were inhibited significantly more than endothelial cells which is the desirable feature of an anti-restenosis drug. This work reports the effects of implantation of a centeritide-eluting stent (CES) on ISR and endothelialization in an in vivo model. CESs were produced by coating bare metallic stents with CD-NP entrapped in biodegradable poly(ε-caprolactone) using an ultrasonic spray coater. A total of 32 stents were successfully implanted into 16 pigs, and all animal survived for 28 days. The plasma levels of CD-NP were significantly higher in the CES group than in the control group (bare metal stents and polymer-coated stent) at post-stenting, indicating the successful release of CD-NP from the stent in vivo. Furthermore, SEM analysis results showed the greater endothelial coverage of the stent struts, as well as between the struts in CES group. Moreover, histological results showed mild inflammation, and low fibrin score at 28 days. However, plasma cGMP (second messenger, cyclic 3′,5′ guanosine monophosphate) does not show a significant difference, and the CES is also unable to show significant difference in terms on neointimal area and stenosis, in comparison to BMS at 28 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Abassi, Z., T. Karram, S. Ellaham, J. Winaver, and A. Hoffman. Implications of the natriuretic peptide system in the pathogenesis of heart failure: diagnostic and therapeutic importance. Pharmacol. Ther. 102:223–241, 2004.

    Article  CAS  PubMed  Google Scholar 

  2. Barr, C. S., P. Rhodes, and A. D. Struthers. C-type natriuretic peptide. Peptides 17:1243–1251, 1996.

    Article  CAS  PubMed  Google Scholar 

  3. Carter, A. J., A. Brodeur, R. Collingwood, S. Ross, L. Gibson, C. A. Wang, S. Haller, L. Coleman, and R. Virmani. Experimental efficacy of an everolimus eluting cobalt chromium stent. Catheter. Cardiovasc. Interv. 68:97–103, 2006.

    Article  PubMed  Google Scholar 

  4. Chen, H., and J. Burnett. Clinical application of the natriuretic peptides in heart failure. Eur. Heart J. Suppl. 8:E18–E25, 2006.

    Article  CAS  Google Scholar 

  5. Degertekin, M., P. W. Serruys, D. P. Foley, K. Tanabe, E. Regar, J. Vos, P. C. Smits, W. J. van der Giessen, M. van den Brand, P. de Feyter, and J. J. Popma. Persistent inhibition of neointimal hyperplasia after sirolimus-eluting stent implantation: long-term (up to 2 years) clinical, angiographic, and intravascular ultrasound follow-up. Circulation 106:1610–1613, 2002.

    Article  PubMed  Google Scholar 

  6. Del Ry, S., M. Maltinti, M. Emdin, C. Passino, G. Catapano, and D. Giannessi. Radioimmunoassay for plasma C-type natriuretic peptide determination: a methodological evaluation. Clin. Chem. Lab. Med. 43:641–645, 2005.

    PubMed  Google Scholar 

  7. Dickey, D. M., and L. R. Potter. Dendroaspis natriuretic peptide and the designer natriuretic peptide, CD-NP, are resistant to proteolytic inactivation. J. Mol. Cell. Cardiol. 51:67–71, 2011.

    Article  CAS  PubMed  Google Scholar 

  8. Furuya, M., Y. Tawaragi, Y. Minamitake, Y. Kitajima, K. Fuchimura, S. Tanaka, N. Minamino, K. Kangawa, and H. Matsuo. Structural requirements of C-type natriuretic peptide for elevation of cyclic GMP in cultured vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 183:964–969, 1992.

    Article  CAS  PubMed  Google Scholar 

  9. Furuya, M., M. Yoshida, Y. Hayashi, N. Ohnuma, N. Minamino, K. Kangawa, and H. Matsuo. C-type natriuretic peptide is a growth inhibitor of rat vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 177:927–931, 1991.

    Article  CAS  PubMed  Google Scholar 

  10. Grube, E., S. Sonoda, F. Ikeno, Y. Honda, S. Kar, C. Chan, U. Gerckens, A. J. Lansky, and P. J. Fitzgerald. Six- and twelve-month results from first human experience using everolimus-eluting stents with bioabsorbable polymer. Circulation 109:2168–2171, 2004.

    Article  CAS  PubMed  Google Scholar 

  11. Hong, M. K., R. Kornowski, O. Bramwell, A. O. Ragheb, and M. B. Leon. Paclitaxel-coated Gianturco-Roubin (R) IIAl (GR (R) II) stents reduce neointimal hyperplasia in a porcine coronary in-stent restenosis model. Coron. Artery Dis. 12:513–515, 2001.

    Article  CAS  PubMed  Google Scholar 

  12. Huang, Y., H. C. Ng, X. W. Ng, and V. Subbu. Drug-eluting biostable and erodible stents. J Control Release 193:188–201, 2014.

    Article  CAS  PubMed  Google Scholar 

  13. Huang, Y. Y., S. S. Venkatraman, F. Y. C. Boey, E. M. Lahti, P. R. Umashankar, M. Mohanty, S. Arumugam, L. Khanolkar, and S. Vaishnav. In vitro and in vivo performance of a dual drug-eluting stent (DDES). Biomaterials 31:4382–4391, 2010.

    Article  CAS  PubMed  Google Scholar 

  14. Huang, Y., S. S. Venkatraman, F. Y. C. Boey, P. R. Umashankar, M. Mohanty, and S. Arumugam. The short-term effect on restenosis and thrombosis of a cobalt-chromium stent eluting two drugs in a porcine coronary artery model. J. Interv. Cardiol. 22:466–478, 2009.

    Article  PubMed  Google Scholar 

  15. Jabara, R., N. Chronos, F. Tondato, D. Conway, W. Molema, K. Park, T. Mabin, S. King, and K. Robinson. Toxic vessel reaction to an absorbable polymer-based paclitaxel-eluting stent in pig coronary arteries. J. Invasive Cardiol. 18:383–390, 2006.

    PubMed  Google Scholar 

  16. Kalra, P. R., S. D. Anker, A. D. Struthers, and A. J. Coats. The role of C-type natriuretic peptide in cardiovascular medicine. Eur. Heart J. 22:997–1007, 2001.

    Article  CAS  PubMed  Google Scholar 

  17. Kedia, G., and M. S. Lee. Stent thrombosis with drug-eluting stents: A re-examination of the evidence. Catheter. Cardiovasc. Interv. 69:782–789, 2007.

    Article  PubMed  Google Scholar 

  18. Kereiakes, D. J., D. A. Cox, J. B. Hermiller, M. G. Midei, W. B. Bachinsky, E. D. Nukta, M. B. Leon, S. Fink, L. Marin, and A. J. Lansky. Usefulness of a cobalt chromium coronary stent alloy. Am. J. Cardiol. 92:463–466, 2003.

    Article  CAS  PubMed  Google Scholar 

  19. Lim, S. G., S. S. Venkatraman, J. C. Burnett, Jr, and H. H. Chen. In-vivo evaluation of an in situ polymer precipitation delivery system for a novel natriuretic peptide. PLoS One 8:18, 2013.

    Article  Google Scholar 

  20. Lisy, O., B. K. Huntley, D. J. McCormick, P. A. Kurlansky, and J. C. Burnett, Jr. Design, synthesis, and actions of a novel chimeric natriuretic peptide: CD-NP. J. Am. Coll. Cardiol. 52:60–68, 2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Liu, K. L., E. Widjaja, Y. Huang, X. W. Ng, S. C. Loo, F. Y. Boey, and S. S. Venkatraman. A new insight for an old system: protein-PEG colocalization in relation to protein release from PCL/PEG blends. Mol. Pharm. 8:2173–2182, 2011.

    Article  CAS  PubMed  Google Scholar 

  22. Nakazawa, G., J. F. Granada, C. L. Alviar, A. Tellez, G. L. Kaluza, M. Y. Guilhermier, S. Parker, S. M. Rowland, F. D. Kolodgie, M. B. Leon, and R. Virmani. Anti-CD34 antibodies immobilized on the surface of sirolimus-eluting stents enhance stent endothelialization. JACC Cardiovasc. Interv. 3:68–75, 2010.

    Article  PubMed  Google Scholar 

  23. Natsuaki, M., K. Kozuma, T. Morimoto, K. Kadota, T. Muramatsu, Y. Nakagawa, T. Akasaka, K. Igarashi, K. Tanabe, Y. Morino, T. Ishikawa, H. Nishikawa, M. Awata, M. Abe, H. Okada, Y. Takatsu, N. Ogata, K. Kimura, K. Urasawa, Y. Tarutani, N. Shiode, and T. Kimura. Biodegradable polymer biolimus-eluting stent versus durable polymer everolimus-eluting stent: a randomized, controlled, noninferiority trial. J. Am. Coll. Cardiol. 62:181–190, 2013.

    Article  CAS  PubMed  Google Scholar 

  24. Ng, X. W., Y. Huang, H. H. Chen, J. C. Burnett, F. Y. C. Boey, and S. S. Venkatraman. Cenderitide-eluting film for potential cardiac patch applications. PLoS One 8:e68346, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Ng, X. W., Y. Huang, K. L. Liu, F. Y. Boey, and S. S. Venkatraman. Investigation of cenderitide controlled release platforms for potential local treatment of cardiovascular pathology. J. Pharm. Sci. 103:1400–1410, 2014.

    Article  CAS  PubMed  Google Scholar 

  26. Ng, X. W., Y. Huang, K. L. Liu, S. G. Lim, H. H. Chen, J. C. Burnett, Jr, Y. C. Freddy Boey, and S. S. Venkatraman. In vitro evaluation of cenderitide-eluting stent I -an antirestenosis and proendothelization approach. J. Pharm. Sci. 103:3631–3640, 2014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Nishikimi, T., N. Maeda, and H. Matsuoka. The role of natriuretic peptides in cardioprotection. Cardiovasc. Res. 69:318–328, 2006.

    Article  CAS  PubMed  Google Scholar 

  28. Pandey, K. N. Emerging roles of natriuretic peptides and their receptors in pathophysiology of hypertension and cardiovascular regulation. J. Am. Soc. Hypertens. 2:210–226, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Rogers, C., F. G. P. Welt, M. J. Karnovsky, and E. R. Edelman. Monocyte recruitment and neointimal hyperplasia in rabbits—coupled inhibitory effects of heparin. Arterioscler. Thromb. Vasc. Biol. 16:1312–1318, 1996.

    Article  CAS  PubMed  Google Scholar 

  30. Schwartz, R. S., N. A. Chronos, and R. Virmani. Preclinical restenosis models and drug-eluting stents still important, still much to learn. J. Am. Coll. Cardiol. 44:1373–1385, 2004.

    CAS  PubMed  Google Scholar 

  31. Schwartz, R. S., and E. R. Edelman. Drug-eluting Stents in preclinical studies—recommended evaluation from a consensus group. Circulation 106:1867–1873, 2002.

    Article  PubMed  Google Scholar 

  32. Schwartz, R. S., K. C. Huber, J. G. Murphy, W. D. Edwards, A. R. Camrud, R. E. Vlietstra, and D. R. Holmes. Restenosis and the proportional neointimal response to coronary-artery injury—results in a porcine model. J. Am. Coll. Cardiol. 19:267–274, 1992.

    Article  CAS  PubMed  Google Scholar 

  33. Scotland, R. S., A. Ahluwalia, and A. J. Hobbs. C-type natriuretic peptide in vascular physiology and disease. Pharmacol. Ther. 105:85–93, 2005.

    Article  CAS  PubMed  Google Scholar 

  34. Shinomiya, M., J. Tashiro, Y. Saito, S. Yoshida, M. Furuya, N. Oka, S. Tanaka, K. Kangawa, and H. Matsuo. C-type natriuretic peptide inhibits intimal thickening of rabbit carotid artery after balloon catheter injury. Biochem. Biophys. Res. Commun. 205:1051–1056, 1994.

    Article  CAS  PubMed  Google Scholar 

  35. Stone, G. W., J. W. Moses, S. G. Ellis, J. Schofer, K. D. Dawkins, M. C. Morice, A. Colombo, E. Schampaert, E. Grube, A. J. Kirtane, D. E. Cutlip, M. Fahy, S. J. Pocock, R. Mehran, and M. B. Leon. Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents. N. Engl. J. Med. 356:998–1008, 2007.

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki, T., G. Kopia, S. Hayashi, L. R. Bailey, G. Llanos, R. Wilensky, B. D. Klugherz, G. Papandreou, P. Narayan, M. B. Leon, A. C. Yeung, F. Tio, P. S. Tsao, R. Falotico, and A. J. Carter. Stent-based delivery of sirolimus reduces neointimal formation in a porcine coronary model. Circulation 104:1188–1193, 2001.

    Article  CAS  PubMed  Google Scholar 

  37. Tsimikas, S. Drug-eluting stents and late adverse clinical outcomes: lessons learned, lessons awaited. J. Am. Coll. Cardiol. 47:2112–2115, 2006.

    Article  CAS  PubMed  Google Scholar 

  38. Venkatraman, S., and F. Boey. Release profiles in drug-eluting stents: Issues and uncertainties. J Control Release 120:149–160, 2007.

    Article  CAS  PubMed  Google Scholar 

  39. Welt, F. G. P., E. R. Edelman, D. I. Simon, and C. Rogers. Neutrophil, not macrophage, infiltration precedes neointimal thickening in balloon-injured arteries. Arterioscler. Thromb. Vasc. Biol. 20:2553–2558, 2000.

    Article  CAS  PubMed  Google Scholar 

  40. Woodard, G. E., and J. A. Rosado. Chapter 3 natriuretic peptides in vascular physiology and pathology. In: International Review of Cell and Molecular Biology, edited by W. J. Kwang. Waltham: Academic Press, 2008, pp. 59–93.

    Google Scholar 

  41. Woodard, G. E., and J. A. Rosado. Natriuretic peptides in vascular physiology and pathology. Int. Rev. Cell Mol. Biol. 268:59–93, 2008.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from The National Research Foundation – Competitive Research Programme, http://www.nrf.gov.sg/(NRF-CRP 2-2007-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subbu S. Venkatraman.

Additional information

Associate Editor Sean McGinty oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Ng, X.W., Lim, S.G. et al. In vivo Evaluation of Cenderitide-Eluting Stent (CES) II. Ann Biomed Eng 44, 432–441 (2016). https://doi.org/10.1007/s10439-015-1389-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1389-1

Keywords

Navigation