Skip to main content

Advertisement

Log in

Liver-Tumor Hybrid Organoids for Modeling Tumor Growth and Drug Response In Vitro

Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Current in vitro models for tumor growth and metastasis are poor facsimiles of in vivo cancer physiology and thus, are not optimal for anti-cancer drug development. Three dimensional (3D) tissue organoid systems, which utilize human cells in a tailored microenvironment, have the potential to recapitulate in vivo conditions and address the drawbacks of current tissue culture dish 2D models. In this study, we created liver-based cell organoids in a rotating wall vessel bioreactor. The organoids were further inoculated with colon carcinoma cells in order to create liver-tumor organoids for in vitro modeling of liver metastasis. Immunofluorescent staining revealed notable phenotypic differences between tumor cells in 2D and inside the organoids. In 2D they displayed an epithelial phenotype, and only after transition to the organoids did the cells present with a mesenchymal phenotype. The cell surface marker expression results suggested that WNT pathway might be involved in the phenotypic changes observed between cells in 2D and organoid conditions, and may lead to changes in cell proliferation. Manipulating the WNT pathway with an agonist and antagonist showed significant changes in sensitivity to the anti-proliferative drug 5-fluoruracil. Collectively, the results show the potential of in vitro 3D liver-tumor organoids to serve as a model for metastasis growth and for testing the response of tumor cells to current and newly discovered drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

5-FU:

5-Fluorouracil

BIO:

6-Bromoindirubin-3′-oxime

ECM:

Extracellular matrix

EMT:

Epithelial-to-mesenchymal transition

DMEM:

Dulbecco’s Minimum Essential Medium

FBS:

Fetal bovine serum

HA:

Hyaluronic acid

IHC:

Immunohistochemistry

PEGDA:

Polyethylene glycol diacrylate

RFP:

Red fluorescent protein

RWV:

Rotating wall vessel

XAV93:

3,5,7,8-tetrahydro-2-[4-(trifluoromethyl)phenyl]-4H-thiopyrano[4,3-d]pyrimidin-4-one

References

  1. Achilli, T. M., J. Meyer, and J. R. Morgan. Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin. Biol. Ther. 12:1347–1360, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Attoub, S., C. Rivat, S. Rodrigues, S. Van Bocxlaer, M. Bedin, E. Bruyneel, C. Louvet, M. Kornprobst, T. Andre, M. Mareel, J. Mester, and C. Gespach. The c-kit tyrosine kinase inhibitor STI571 for colorectal cancer therapy. Cancer Res. 62:4879–4883, 2002.

    CAS  PubMed  Google Scholar 

  3. Barrila, J., A. Radtke, A. Crabbé, S. Sarker, M. M. Herbst-Kralovetz, C. M. Ott, and C. A. Nickerson. Organotypic 3D cell culture models: using the rotating wall vessel to study host-pathogen interactions. Nat. Rev. Microbiol. 8:791–801, 2010.

    Article  CAS  PubMed  Google Scholar 

  4. Behrens, J. Control of beta-catenin signaling in tumor development. Ann. NY Acad. Sci. 910:21–33, 2000; (discussion 33–25).

    Article  CAS  PubMed  Google Scholar 

  5. Botchkina, I. L., R. A. Rowehl, D. E. Rivadeneira, M. S. Karpeh, Jr., H. Crawford, A. Dufour, J. Ju, Y. Wang, Y. Leyfman, and G. I. Botchkina. Phenotypic subpopulations of metastatic colon cancer stem cells: genomic analysis. Cancer Genom. Proteom. 6:19–29, 2009.

    CAS  Google Scholar 

  6. Brantjes, H., N. Barker, J. van Es, and H. Clevers. TCF: Lady Justice casting the final verdict on the outcome of Wnt signalling. Biol. Chem. 383:255–261, 2002.

    Article  CAS  PubMed  Google Scholar 

  7. Brattain, M. G., W. D. Fine, F. M. Khaled, J. Thompson, and D. E. Brattain. Heterogeneity of malignant cells from a human colonic carcinoma. Cancer Res. 41:1751–1756, 1981.

    CAS  PubMed  Google Scholar 

  8. Burdick, J. A., and G. D. Prestwich. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 23:H41–H56, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bursac, N., Y. Loo, K. Leong, and L. Tung. Novel anisotropic engineered cardiac tissues: studies of electrical propagation. Biochem. Biophys. Res. Commun. 361:847–853, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carterson, A. J., K. Honer zu Bentrup, C. M. Ott, M. S. Clarke, D. L. Pierson, C. R. Vanderburg, K. L. Buchanan, C. A. Nickerson, and M. J. Schurr. A549 lung epithelial cells grown as three-dimensional aggregates: alternative tissue culture model for Pseudomonas aeruginosa pathogenesis. Infect. Immun. 73:1129–1140, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Drewitz, M., M. Helbling, N. Fried, M. Bieri, W. Moritz, J. Lichtenberg, and J. M. Kelm. Towards automated production and drug sensitivity testing using scaffold-free spherical tumor microtissues. Biotechnol. J. 6:1488–1496, 2011.

    Article  CAS  PubMed  Google Scholar 

  12. Erickson, I. E., A. H. Huang, C. Chung, R. T. Li, J. A. Burdick, and R. L. Mauck. Differential maturation and structure-function relationships in mesenchymal stem cell- and chondrocyte-seeded hydrogels. Tissue Eng. Part A 15:1041–1052, 2009.

    Article  CAS  PubMed  Google Scholar 

  13. Frye, C. A., and C. W. Patrick. Three-dimensional adipose tissue model using low shear bioreactors. Vitro Cell Dev. Biol. Anim. 42:109–114, 2006.

    Article  CAS  Google Scholar 

  14. Gavert, N. and A. Ben-Ze’ev. Coordinating changes in cell adhesion and phenotype during EMT-like processes in cancer. F1000 Biol Rep. 2:86, 2010.

  15. Gerecht, S., J. A. Burdick, L. S. Ferreira, S. A. Townsend, R. Langer, and G. Vunjak-Novakovic. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc. Natl. Acad. Sci. USA. 104:11298–11303, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hjelm, B. E., A. N. Berta, C. A. Nickerson, C. J. Arntzen, and M. M. Herbst-Kralovetz. Development and characterization of a three-dimensional organotypic human vaginal epithelial cell model. Biol. Reprod. 82:617–627, 2010.

    Article  CAS  PubMed  Google Scholar 

  17. Ho, W. J., E. A. Pham, J. W. Kim, C. W. Ng, J. H. Kim, D. T. Kamei, and B. M. Wu. Incorporation of multicellular spheroids into 3D polymeric scaffolds provides an improved tumor model for screening anticancer drugs. Cancer Sci. 101:2637–2643, 2010.

    Article  CAS  PubMed  Google Scholar 

  18. Honer zu Bentrup, K., R. Ramamurthy, C. M. Ott, K. Emami, M. Nelman-Gonzalez, J. W. Wilson, E. G. Richter, T. J. Goodwin, J. S. Alexander, D. L. Pierson, N. Pellis, K. L. Buchanan, and C. A. Nickerson. Three-dimensional organotypic models of human colonic epithelium to study the early stages of enteric salmonellosis. Microbes. Infect. 8:1813–1825, 2006.

    Article  PubMed  Google Scholar 

  19. Karakiulakis, G., C. Papanikolaou, S. M. Jankovic, A. Aletras, E. Papakonstantinou, E. Vretou, and V. Mirtsou-Fidani. Increased type IV collagen-degrading activity in metastases originating from primary tumors of the human colon. Invasion Metastasis 17:158–168, 1997.

    CAS  PubMed  Google Scholar 

  20. LaMarca, H. L., C. M. Ott, K. Honer Zu Bentrup, C. L. Leblanc, D. L. Pierson, A. B. Nelson, A. B. Scandurro, G. S. Whitley, C. A. Nickerson, and C. A. Morris. Three-dimensional growth of extravillous cytotrophoblasts promotes differentiation and invasion. Placenta. 26:709–720, 2005.

    Article  CAS  PubMed  Google Scholar 

  21. Leach, J. B., K. A. Bivens, C. N. Collins, and C. E. Schmidt. Development of photocrosslinkable hyaluronic acid-polyethylene glycol-peptide composite hydrogels for soft tissue engineering. J. Biomed. Mater. Res. A. 70:74–82, 2004.

    Article  PubMed  Google Scholar 

  22. Liu, Y., X. Z. Shu, and G. D. Prestwich. Tumor engineering: orthotopic cancer models in mice using cell-loaded, injectable, cross-linked hyaluronan-derived hydrogels. Tissue Eng. 13:1091–1101, 2007.

    Article  CAS  PubMed  Google Scholar 

  23. Macedo, F. I., and T. Makarawo. Colorectal hepatic metastasis: Evolving therapies. World. J. Hepatol. 6:453–463, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  24. May, J. E., J. Xu, H. R. Morse, N. D. Avent, and C. Donaldson. Toxicity testing: the search for an in vitro alternative to animal testing. Br. J. Biomed. Sci. 66:160–165, 2009.

    Article  CAS  PubMed  Google Scholar 

  25. McGrail, D. J., R. Mezencev, Q. M. Kieu, J. F. McDonald, and M. R. Dawson. SNAIL-induced epithelial-to-mesenchymal transition produces concerted biophysical changes from altered cytoskeletal gene expression. FASEB J. 29:1–10, 2014.

    Google Scholar 

  26. Miki, D., K. Dastgheib, T. Kim, A. Pfister-Serres, K. A. Smeds, M. Inoue, D. L. Hatchell, and M. W. Grinstaff. A photopolymerized sealant for corneal lacerations. Cornea 21:393–399, 2002.

    Article  PubMed  Google Scholar 

  27. Myers, T. A., C. A. Nickerson, D. Kaushal, C. M. Ott, K. Honer zu Bentrup, M. Nelman-Gonzalez, R. Ramamurthy, D. L. Pierson, and M. T. Philipp. Closing the phenotypic gap between transformed neuronal cell lines in culture and untransformed neurons. J. Neurosci. Methods 174:31–41, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Navran, S. The application of low shear modeled microgravity to 3D cell biology and tissue engineering. Biotechnol. Annu. Rev. 14:275–296, 2008.

    Article  CAS  PubMed  Google Scholar 

  29. Nickerson, C. A., and C. M. Ott. A new dimension in modeling infectious disease. ASM News. 70:169–175, 2004.

    Google Scholar 

  30. Nickerson, C. A., T. J. Goodwin, J. Terlonge, C. M. Ott, K. L. Buchanan, W. C. Uicker, K. Emami, C. L. LeBlanc, R. Ramamurthy, M. S. Clarke, C. R. Vanderburg, T. Hammond, and D. L. Pierson. Three-dimensional tissue assemblies: novel models for the study of Salmonella enterica serovar Typhimurium pathogenesis. Infect. Immun. 69:7106–7120, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nickerson, C. A., E. G. Richter, and C. M. Ott. Studying host-pathogen interactions in 3D: organotypic models for infectious disease and drug development. J Neuroimmune Pharmacol. 2:26–31, 2007.

    Article  PubMed  Google Scholar 

  32. Nishioka, M., K. Ueno, S. Hazama, T. Okada, K. Sakai, Y. Suehiro, N. Okayama, H. Hirata, M. Oka, K. Imai, R. Dahiya, and Y. Hinoda. Possible involvement of Wnt11 in colorectal cancer progression. Mol. Carcinog. 52:207–217, 2013.

    Article  PubMed  Google Scholar 

  33. Ogunwobi, O. O., and C. Liu. Therapeutic and prognostic importance of epithelial-mesenchymal transition in liver cancers: insights from experimental models. Crit. Rev. Oncol. Hematol. 83:319–328, 2012.

    Article  PubMed  Google Scholar 

  34. Orsulic, S., O. Huber, H. Aberle, S. Arnold, and R. Kemler. E-cadherin binding prevents beta-catenin nuclear localization and beta-catenin/LEF-1-mediated transactivation. J. Cell Sci. 112(Pt 8):1237–1245, 1999.

    CAS  PubMed  Google Scholar 

  35. Prestwich, G. D. Evaluating drug efficacy and toxicology in three dimensions: using synthetic extracellular matrices in drug discovery. Acc. Chem. Res. 41:139–148, 2008.

    Article  CAS  PubMed  Google Scholar 

  36. Sainz, Jr., B., V. TenCate, and S. L. Uprichard. Three-dimensional Huh7 cell culture system for the study of Hepatitis C virus infection. Virol J. 6:103, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schwarz, R. P., T. J. Goodwin, and D. A. Wolf. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J Tissue Cult. Methods. 14:51–57, 1992.

    Article  CAS  PubMed  Google Scholar 

  38. Serban, M. A., A. Scott, and G. D. Prestwich. Use of hyaluronan-derived hydrogels for three-dimensional cell culture and tumor xenografts. Curr. Protoc. Cell Biol. Chapter 10:Unit 10.14, 2008. doi:10.1002/0471143030.cb1014s40

    PubMed  Google Scholar 

  39. Shu, X. Z., Y. Liu, F. S. Palumbo, Y. Luo, and G. D. Prestwich. In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials 25:1339–1348, 2004.

    Article  CAS  Google Scholar 

  40. Shu, X. Z., S. Ahmad, Y. Liu, and G. D. Prestwich. Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering. J. Biomed. Mater. Res. A. 79:902–912, 2006.

    Article  PubMed  Google Scholar 

  41. Skardal, A. Hyaluronan and gelatin biomaterials for bioprinting engineered tissues. Department of Bioengineering, University of Utah. Ph.D. Dissertation:208, 2010.

  42. Skardal, A., S. F. Sarker, A. Crabbe, C. A. Nickerson, and G. D. Prestwich. The generation of 3D tissue models based on hyaluronan hydrogel-coated microcarriers within a rotating wall vessel bioreactor. Biomaterials 31:8426–8435, 2010.

    Article  CAS  PubMed  Google Scholar 

  43. Skardal, A., J. Zhang, L. McCoard, S. Oottamasathien, and G. D. Prestwich. Dynamically crosslinked gold nanoparticle—hyaluronan hydrogels. Adv. Mater. 22:4736–4740, 2010.

    Article  CAS  PubMed  Google Scholar 

  44. Skardal, A., J. Zhang, and G. D. Prestwich. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 31:6173–6181, 2010.

    Article  CAS  PubMed  Google Scholar 

  45. Skardal, A., L. Smith, S. Bharadwaj, A. Atala, S. Soker, and Y. Zhang. Tissue specific synthetic ECM hydrogels for 3D in vitro maintenance of hepatocyte function. Biomaterials 33:4565–4575, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smith, Y. C., K. K. Grande, S. B. Rasmussen, and A. D. O’Brien. Novel three-dimensional organoid model for evaluation of the interaction of uropathogenic Escherichia coli with terminally differentiated human urothelial cells. Infect. Immun. 74:750–757, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Steinert, G., S. Scholch, M. Koch, and J. Weitz. Biology and significance of circulating and disseminated tumour cells in colorectal cancer. Langenbecks Arch Surg. 397:535–542, 2012.

    Article  PubMed  Google Scholar 

  48. Strillacci, A., M. C. Valerii, P. Sansone, C. Caggiano, A. Sgromo, L. Vittori, M. Fiorentino, G. Poggioli, F. Rizzello, M. Campieri, and E. Spisni. Loss of miR-101 expression promotes Wnt/beta-catenin signalling pathway activation and malignancy in colon cancer cells. J. Pathol. 229:379–389, 2013.

    Article  CAS  PubMed  Google Scholar 

  49. Tania, M., M. A. Khan, and J. Fu. Epithelial to mesenchymal transition inducing transcription factors and metastatic cancer. Tumour Biol. 35:7335–7342, 2014.

    Article  CAS  PubMed  Google Scholar 

  50. Unsworth, B. R., and P. I. Lelkes. Growing tissues in microgravity. Nat. Med. 4:901–907, 1998.

    Article  CAS  PubMed  Google Scholar 

  51. Vandamme, T. F. Use of rodents as models of human diseases. J. Pharm. Bioallied. Sci. 6:2–9, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wheeler, S. E., A. M. Clark, D. P. Taylor, C. L. Young, V. C. Pillai, D. B. Stolz, R. Venkataramanan, D. Lauffenburger, L. Griffith, and A. Wells. Spontaneous dormancy of metastatic breast cancer cells in an all human liver microphysiologic system. Br. J. Cancer. 111(12):2342–2350, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wilson, P. M., P. V. Danenberg, P. G. Johnston, H. J. Lenz, and R. D. Ladner. Standing the test of time: targeting thymidylate biosynthesis in cancer therapy. Nat. Rev. Clin. Oncol. 11:282–298, 2014.

    Article  CAS  PubMed  Google Scholar 

  54. Yoffe, B., G. J. Darlington, H. E. Soriano, B. Krishnan, D. Risin, N. R. Pellis, and V. I. Khaoustov. Cultures of human liver cells in simulated microgravity environment. Adv. Space Res. 24:829–836, 1999.

    Article  CAS  PubMed  Google Scholar 

  55. Yoshioka, T., H. Mishima, Y. Ohyabu, S. Sakai, H. Akaogi, T. Ishii, H. Kojima, J. Tanaka, N. Ochiai, and T. Uemura. Repair of large osteochondral defects with allogeneic cartilaginous aggregates formed from bone marrow-derived cells using RWV bioreactor. J. Orthop. Res. 25:1291–1298, 2007.

    Article  PubMed  Google Scholar 

  56. Young, M., L. Ordonez, and A. R. Clarke. What are the best routes to effectively model human colorectal cancer? Mol. Oncol. 7:178–189, 2013.

    Article  PubMed  Google Scholar 

  57. Zaman, M. H., L. M. Trapani, A. L. Sieminski, D. Mackellar, H. Gong, R. D. Kamm, A. Wells, D. A. Lauffenburger, and P. Matsudaira. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. USA. 103:10889–10894, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Golfers Against Cancer and Wake Forest University Baptist Medical Center Comprehensive Cancer Center.

Conflict of interest

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shay Soker.

Additional information

Associate Editor James J Moon oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skardal, A., Devarasetty, M., Rodman, C. et al. Liver-Tumor Hybrid Organoids for Modeling Tumor Growth and Drug Response In Vitro . Ann Biomed Eng 43, 2361–2373 (2015). https://doi.org/10.1007/s10439-015-1298-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1298-3

Keywords

Navigation