Skip to main content

Advertisement

Log in

Changes in Global and Regional Mechanics Due to Atrial Fibrillation: Insights from a Coupled Finite-Element and Circulation Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Atrial fibrillation (AF) is a rhythm disorder with rapidly increasing prevalence due to the aging of the population. AF triggers structural remodeling and a gradual loss of function; however, the relative contributions of specific features of AF-induced remodeling to changes in atrial mechanical function are unclear. We constructed and validated a finite-element model (FEM) of the normal human left atrium using anatomic information from cardiac magnetic resonance imaging, material properties and fiber orientations from published studies, and an iterative algorithm to estimate unloaded geometry. We coupled the FEM to a circuit model to capture hemodynamic interactions between the atrium, pulmonary circulation, and left ventricle. The normal model reproduced measured volumes within 1 SD, as well as most metrics of regional mechanics. Using this validated human model as a starting point, we explored the impact of individual features of atrial remodeling on atrial mechanics and found that a combination of dilation, increased pressure, and fibrosis can explain most of the observed changes in mechanics in patients with paroxysmal AF. However, only impaired ventricular relaxation could reproduce the increased reliance on active emptying we observed in these patients. The resulting model provides new insight into the mechanics of AF and a platform for exploring future therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Alexander, J., K. Sunagawa, N. Chang, and K. Sagawa. Instantaneous pressure-volume relation of the ejecting canine left atrium. Circ. Res. 61:209–219, 1987.

    Article  PubMed  Google Scholar 

  2. Bellini, C., and E. S. Di Martino. A mechanical characterization of the porcine atria at the healthy stage and after ventricular tachypacing. J. Biomech. Eng. 134:021008, 2012.

    Article  PubMed  Google Scholar 

  3. Blume, G. G., C. J. Mcleod, M. E. Barnes, J. B. Seward, P. A. Pellikka, P. M. Bastiansen, and T. S. M. Tsang. Left atrial function: physiology, assessment, and clinical implications. Eur. J. Echocardiogr. 12:421–430, 2011.

    Article  PubMed  Google Scholar 

  4. Boyd, A. C., N. B. Schiller, D. Leung, D. L. Ross, and L. Thomas. Atrial dilation and altered function are mediated by age and diastolic function but not before the eighth decade. JACC Cardiovasc. Imaging 4:234–242, 2011.

    Article  PubMed  Google Scholar 

  5. Clark, D. M., V. J. Plumb, A. E. Epstein, and G. N. Kay. Hemodynamic effects of an irregular sequence of ventricular cycle lengths during atrial fibrillation. J. Am. Coll. Cardiol. 30:1039–1045, 1997.

    Article  CAS  PubMed  Google Scholar 

  6. Di Martino, E. S., C. Bellini, and D. S. Schwartzman. In vivo porcine left atrial wall stress: computational model. J. Biomech. 44:2589–2594, 2011.

    Article  PubMed  Google Scholar 

  7. Di Martino, E. S., C. Bellini, and D. S. Schwartzman. In vivo porcine left atrial wall stress: effect of ventricular tachypacing on spatial and temporal stress distribution. J. Biomech. 44:2755–2760, 2011.

    Article  PubMed  Google Scholar 

  8. Doessel, O., M. W. Krueger, F. M. Weber, M. Wilhelms, and G. Seemann. Computational modeling of the human left atrial anatomy and electrophysiology. Med. Biol. Eng. Comput. 50:773–799, 2012.

    Article  Google Scholar 

  9. Fomovsky, G. M., and J. W. Holmes. Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat. Am. J. Physiol. Heart Circ. Physiol. 298:H221–H228, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Frost, L. Lone atrial fibrillation: good, bad, or ugly? Circulation 115:3040–3041, 2007.

    Article  PubMed  Google Scholar 

  11. Gloschat, C., J. Cates, B. Walker, and R. S. MacLeod. Statistical shape modeling of the left atrium from MRI of patients with atrial fibrillation. J. Cardiovasc. Magn. Reson. 13:P57, 2011.

    Article  PubMed Central  Google Scholar 

  12. Go, A. S., E. M. Hylek, K. A. Phillips, Y. Chang, L. E. Henault, J. V. Selby, and D. E. Singer. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the anticoagulation and risk factors in atrial fibrillation (ATRIA) study. JAMA 285:2370–2375, 2001.

    Article  CAS  PubMed  Google Scholar 

  13. Govindjee, S., and P. A. Mihalic. Computational methods for inverse finite elastostatics. Comput. Methods Appl. Mech. Eng. 136:47–57, 1996.

    Article  Google Scholar 

  14. Guccione, J. M., and A. D. McCulloch. Mechanics of active contraction in cardiac muscle: part I—constitutive relations for fiber stress that describe deactivation. J. Biomech. Eng. 115:72–81, 1993.

    Article  CAS  PubMed  Google Scholar 

  15. Guyton, A. C., A. W. Lindsey, B. Abernathy, and T. Richardson. Venous return at various right atrial pressures and the normal venous return curve. Am. J. Physiol. 189:609–615, 1957.

    CAS  PubMed  Google Scholar 

  16. Hay, I., J. Rich, P. Ferber, D. Burkhoff, and M. S. Maurer. Role of impaired myocardial relaxation in the production of elevated left ventricular filling pressure. Am. J. Physiol. Heart Circ. Physiol. 288:H1203–H1208, 2005.

    Article  CAS  PubMed  Google Scholar 

  17. Ho, S. Y., R. H. Anderson, and D. Sánchez-Quintana. Atrial structure and fibres: morphologic bases of atrial conduction. Cardiovasc. Res. 54:325–336, 2002.

    Article  CAS  PubMed  Google Scholar 

  18. Ho, S. Y., D. Sanchez-Quintana, J. A. Cabrera, and R. H. Anderson. Anatomy of the left atrium: implications for radiofrequency ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol. 10:1525–1533, 1999.

    Article  CAS  PubMed  Google Scholar 

  19. Hunter, R. J., Y. Liu, Y. Lu, W. Wang, and R. J. Schilling. Left atrial wall stress distribution and its relationship to electrophysiologic remodeling in persistent atrial fibrillation. Circ. Arrhythm. Electrophysiol. 5:351–360, 2012.

    Article  PubMed  Google Scholar 

  20. Jahnke, C., J. Fischer, J.-H. Gerds-Li, R. Gebker, R. Manka, E. Fleck, I. Paetsch, and C. Kriatselis. Serial monitoring of reverse left-atrial remodeling after pulmonary vein isolation in patients with atrial fibrillation: a magnetic resonance imaging study. Int. J. Cardiol. 153:42–46, 2011.

    Article  PubMed  Google Scholar 

  21. Jaïs, P., J. T. Peng, D. C. Shah, S. Garrfgue, M. Hocini, T. Yamane, M. Haissaguerre, S. S. Barold, R. Roudaut, and J. Clementy. Left ventricular diastolic dysfunction in patients with so-called lone atrial fibrillation. J. Cardiovasc. Electrophysiol. 11:623–625, 2000.

    Article  PubMed  Google Scholar 

  22. Jernigan, S. R., G. D. Buckner, J. W. Eischen, and D. R. Cormier. Finite element modeling of the left atrium to facilitate the design of an endoscopic atrial retractor. J. Biomech. Eng. 129:825–837, 2007.

    Article  CAS  PubMed  Google Scholar 

  23. Kerckhoffs, R. C. P., M. L. Neal, Q. Gu, J. B. Bassingthwaighte, J. H. Omens, and A. D. McCulloch. Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann. Biomed. Eng. 35:1–18, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Lorenz, C. H., E. S. Walker, V. L. Morgan, S. S. Klein, and T. P. Graham. Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J. Cardiovasc. Magn. Reson. 1:7–21, 1999.

    Article  CAS  PubMed  Google Scholar 

  25. Maas, S. A., B. J. Ellis, G. A. Ateshian, and J. A. Weiss. FEBio: finite elements for biomechanics. J. Biomech. Eng. 134:011005, 2012.

    Article  PubMed  Google Scholar 

  26. Markides, V., R. J. Schilling, S. Yen Ho, A. W. C. Chow, D. W. Davies, and N. S. Peters. Characterization of left atrial activation in the intact human heart. Circulation 107:733–739, 2003.

    Article  PubMed  Google Scholar 

  27. Moyer, C. B. Mechanical function of the left atrium. PhD Thesis, University of Virginia, 2013. http://libra.virginia.edu/catalog/libra-oa:3938.

  28. Moyer, C. B., P. Helm, C. J. Clarke, L. P. Budge, C. M. Kramer, J. D. Ferguson, P. T. Norton, and J. W. Holmes. Wall-motion based analysis of global and regional left atrial mechanics. IEEE Trans. Med. Imaging 32:1765–1776, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Nattel, S. New ideas about atrial fibrillation 50 years on. Nature 415:219–226, 2002.

    Article  CAS  PubMed  Google Scholar 

  30. Platonov, P. G., L. B. Mitrofanova, V. Orshanskaya, and S. Y. Ho. Structural abnormalities in atrial walls are associated with presence and persistency of atrial fibrillation but not with age. J. Am. Coll. Cardiol. 58:2225–2232, 2011.

    Article  PubMed  Google Scholar 

  31. Prioli, A., P. Marino, L. Lanzoni, and P. Zardini. Increasing degrees of left ventricular filling impairment modulate left atrial function in humans. Am. J. Cardiol. 82:756–761, 1998.

    Article  CAS  PubMed  Google Scholar 

  32. Raghavan, M. L., B. Ma, and M. F. Fillinger. Non-invasive determination of zero-pressure geometry of arterial aneurysms. Ann. Biomed. Eng. 34:1414–1419, 2006.

    Article  CAS  PubMed  Google Scholar 

  33. Sanfilippo, A., V. Abascal, M. Sheehan, L. Oertel, P. Harrigan, R. Hughes, and A. Weyman. Atrial enlargement as a consequence of atrial fibrillation: a prospective echocardiographic study. Circulation 82:792–797, 1990.

    Article  CAS  PubMed  Google Scholar 

  34. Schwartzman, D., J. Lacomis, and W. G. Wigginton. Characterization of left atrium and distal pulmonary vein morphology using multidimensional computed tomography. J. Am. Coll. Cardiol. 41:1349–1357, 2003.

    Article  PubMed  Google Scholar 

  35. Stefanadis, C., J. Dernellis, C. Stratos, E. Tsiamis, C. Tsioufis, K. Toutouzas, C. Vlachopoulos, C. Pitsavos, and P. Toutouzas. Assessment of left atrial pressure-area relation in humans by means of retrograde left atrial catheterization and echocardiographic automatic boundary detection: effects of dobutamine. J. Am. Coll. Cardiol. 31:426–436, 1998.

    Article  CAS  PubMed  Google Scholar 

  36. Stefanadis, C., J. Dernellis, C. Stratos, E. Tsiamis, C. Vlachopoulos, K. Toutouzas, S. Lambrou, C. Pitsavos, and P. Toutouzas. Effects of balloon mitral valvuloplasty on left atrial function in mitral stenosis as assessed by pressure–area relation. J. Am. Coll. Cardiol. 32:159–168, 1998.

    Article  CAS  PubMed  Google Scholar 

  37. Wolf, P., R. Abbott, and W. Kannel. Atrial fibrillation as an independent risk factor for stroke: the Framingham study. Stroke 22:983–988, 1991.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao, J., T. D. Butters, H. Zhang, I. LeGrice, G. B. Sands, and B. H. Smaill. Image-based model of atrial anatomy and electrical activation: a computational platform for investigating atrial arrhythmia. IEEE Trans. Med. Imaging 32:18–27, 2013.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. David Lopez for processing atrial MRI and pressure–volume loops. This work was supported in part by a Pre-Doctoral Fellowship (Christian Moyer) and an Established Investigator Award (Jeffrey Holmes) from the AHA, and NIH/NHLBI R01 HL-085160 (Jeffrey Holmes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Holmes.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moyer, C.B., Norton, P.T., Ferguson, J.D. et al. Changes in Global and Regional Mechanics Due to Atrial Fibrillation: Insights from a Coupled Finite-Element and Circulation Model. Ann Biomed Eng 43, 1600–1613 (2015). https://doi.org/10.1007/s10439-015-1256-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1256-0

Keywords

Navigation