Skip to main content
Log in

Quantitative Assessment of Emphysema Severity in Histological Lung Analysis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Emphysema is a characteristic component of chronic obstructive pulmonary disease (COPD), which has been pointed out as one of the main causes of mortality for the next years. Animal models of emphysema are employed to study the evolution of this disease as well as the effect of treatments. In this context, measures such as the mean linear intercept \(\left( L_{\rm m}\right) \) and the equivalent diameter \((d) \) have been proposed to quantify the airspace enlargement associated with emphysematous lesions in histological sections. The parameter \(D_{2}\), which relates the second and the third moments of the variable \(d\), has recently shown to be a robust descriptor of airspace enlargement. However, the value of \(D_{2}\) does not provide a direct evaluation of emphysema severity. In our research, we suggest a Bayesian approach to map \(D_{2}\) onto a novel emphysema severity index (SI) reflecting the probability for a lung area to be emphysematous. Additionally, an image segmentation procedure was developed to compute the severity map of a lung section using the SI function. Severity maps corresponding to 54 lung sections from control mice, mice induced with mild emphysema and mice induced with severe emphysema were computed, revealing differences between the distribution of SI in the three groups. The proposed methodology could then assist in the quantification of emphysema severity in animal models of pulmonary disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. American Thoracic Society. Definitions, epidemiology, pathophysiology, diagnosis, and staging. Am. J. Respir. Crit. Care Med. 152:S78–S83, 1995.

    Article  Google Scholar 

  2. Artaechevarria, X., D. Blanco, G. de Biurrun, M. Ceresa, D. Perez-Martin, G. Bastarrika, J.P. de Torres, J.J. Zulueta, L.M. Montuenga, C. Ortiz-de-Solorzano, and A. Muñoz-Barrutia. Evaluation of micro-CT for emphysema assessment in mice: comparision with non-radiological techniques. Eur. Radiol. 21:954–962, 2011.

    Article  PubMed  Google Scholar 

  3. Bishop, C.M. Neural Networks for Pattern Recognition. Oxford: Oxford University Press, 1995.

    Google Scholar 

  4. Boschetto, P., M. Miniati, D. Miotto, F. Braccioni, E. De Rosa, I. Bononi, A. Papi, M. Saetta, L.M. Fabbri, and C.E. Mapp. Predominant emphysema phenotype in chronic obstructive pulmonary disease patients. Eur. Respir. J. 21:450–454, 2003.

    Article  CAS  PubMed  Google Scholar 

  5. Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 30:1145–1159, 1997.

    Article  Google Scholar 

  6. Castaldi, P.J., R. San Jose-Estepar, C.S. Mendoza, C.P. Hersh, N. Laird, J.D. Crapo, D.A. Lynch, E.K. Silverman, and G.R. Washko. Distinct quantitative computed tomography emphysema patterns are associated with physiology and function in smokers. Am. J. Respir. Crit. Care Med. 188:1083–1090, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Duda, R.O., P.E. Hart, D.G. Stork. Pattern classification. New York: Wiley, 2012.

    Google Scholar 

  8. Dunnill, M.S. Quantitative methods in the study of pulmonary pathology. Thorax 17:320–328, 1962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gonzalez, R.C., R.E. Woods, and S.L. Eddins. Digital Image Processing Using MATLAB. New Jersey: Pearson Prentice Hall, 2004.

    Google Scholar 

  10. Halbert, R.J., J.L. Natoli, A. Gano, E. Badamgarav, A.S. Buist, and D.M. Mannino. Global burden of COPD: systematic review and meta-analysis. Eur. Respir. J. 28:523–532, 2006.

    Article  CAS  PubMed  Google Scholar 

  11. Hsia, C.C.W., M.H. Dallas, M. Ochs, and E.R. Weibel. An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. Am. J. Resp. Crit. Care 181:394–418, 2010.

    Article  Google Scholar 

  12. Jacob, R.E., J.P. Carson, K.M. Gideon, B.G. Amidan, C.L. Smith, and K.M. Lee. Comparison of two quantitative methods of discerning airspace enlargement in smoke-exposed mice. PloS One 4: e6670, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jobson, J.D. Applied Multivariate Data Analysis. Volume II: Categorical and Multivariate Methods. New York: Springer, 1991.

    Book  Google Scholar 

  14. Knudsen, L., E.R. Weibel, H.J.G. Gundersen, F.V. Weinstein, and M. Ochs. Assessment of air space size characteristics by intercept (chord) measurement: an accurate and efficient stereological approach. J. Appl. Physiol. 108:412–421, 2010.

    Article  PubMed  Google Scholar 

  15. Kyriazis, A., I. Rodriguez, N. Nin, J.L. Izquierdo-Garca, J.A. Lorente, J.M. Perez-Sanchez, J. Pesic, L.E. Olsson, and J. Ruiz-Cabello. Dynamic ventilation 3He MRI for the quantification of disease in the rat lung. IEEE Trans. Biomed. Eng. 59:777–786, 2012.

  16. Lakatos, H.F., H.A. Burgess, T.H. Thatcher, M.R. Redonnet, E. Hernady, J.P. Williams, and P.J. Sime. Oropharyngeal aspiration of a silica suspension produces a superior model of silicosis in the mouse when compared to intratracheal instillation. Exp. Lung Res. 32:181–199, 2006.

    Article  CAS  PubMed  Google Scholar 

  17. Mata, J.F., T.A. Altes, J. Cai, K. Ruppert, W. Mitzner, K.D. Hagspiel, B. Patel, M. Salerno, J.R. Brookeman, E.E. de Lange, W.A. Tobias, H.T.J. Wang, G.D. Cates, and J.P. Mugler. Evaluation of emphysema severity and progression in a rabbit model: comparison of hyperpolarized \(^{3}\) He and \(^{129}\) Xe diffusion MRI with lung morphometry. J. Appl. Physiol. 102:1273–1280, 2007.

    Article  PubMed  Google Scholar 

  18. Mühlfeld, C., and M. Ochs. Quantitative microscopy of the lung: a problem-based approach. Part 2: stereological parameters and study designs in various diseases of the respiratory tract. Am. J. Physiol.-Lung Cell. Mol. Physiol. 305:L205–L221, 2013.

    Article  PubMed  Google Scholar 

  19. Muñoz-Barrutia, A., M. Ceresa, X. Artaechevarria, L.M. Montuenga, and C. Ortiz-de-Solorzano. Quantification of lung damage in an elastase-induced mouse model of emphysema. J. Biomed. Imaging 2012:1–11 2012.

    Article  Google Scholar 

  20. Ochs, M., and C. Mühlfeld. Quantitative microscopy of the lung: a problem-based approach. Part 1: basic principles of lung stereology. Am. J. Physiol.-Lung Cell. Mol. Physiol. 305:L15–L22, 2013.

    Article  CAS  PubMed  Google Scholar 

  21. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst., Man Cybern. 9:62–66, 1979.

    Article  Google Scholar 

  22. Parameswaran, H., A. Majumdar, S. Ito, A.M. Alencar, and B. Suki. Quantitative characterization of airspace enlargement in emphysema. J. Appl. Physiol. 100:186–193, 2006.

    Article  PubMed  Google Scholar 

  23. Parameswaran, H., A. Majumdar, and B. Suki. Linking microscopic spatial patterns of tissue destruction in emphysema to macroscopic decline in stiffness using a 3D computational model. PLoS Comput. Biol. 7:e1001125, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peces-Barba, G., J. Ruiz-Cabello, Y. Cremillieux, I. Rodriguez, D. Dupuich, V. Callot, M. Ortega, M.L. Rubio-Arbo, M. Cortijo, and N. Gonzalez-Mangado. Helium-3 MRI diffusion coefficient: correlation to morphometry in a model of mild emphysema. Eur. Respir. J. 22:14–19, 2003.

    Article  CAS  PubMed  Google Scholar 

  25. Preibisch, S., S. Saalfeld, and P. Tomancak. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25:1463–1465, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rabe, K.F., S. Hurd, A. Anzueto, P.J. Barnes, S.A. Buist, P. Calverley, Y. Fukuchi, C. Jenkins, R. Rodriguez-Roisin, C. van Weel, and J. Zielinski. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med. 176:532–555, 2007.

    Article  PubMed  Google Scholar 

  27. Rangasamy, T., C.Y. Cho, R.K. Thimmulappa, L. Zhen, S.S. Srisuma, T.W. Kensler, M. Yamamoto, I. Petrache, R.M. Tuder, and S. Biswal. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J. Clin. Invest. 114:1248–1259, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Silverman, B.W. Density Estimation for Statistics and Data Analysis. London: Chapman & Hall, 1998.

    Google Scholar 

  29. Snider, G.L., J. Kleinerman, W. Thurlbeck, and Z. Bengali. The definition of emphysema: report of a national heart, lung and blood institute, division of lung diseases workshop. Am. Rev. Respir. Dis. 132:182–185, 1985.

    Google Scholar 

  30. Sorensen, L., S.B. Shaker, and M. De Bruijne. Quantitative analysis of pulmonary emphysema using local binary patterns. IEEE Trans. Med. Imag. 29:559–569, 2010.

    Article  Google Scholar 

  31. Vestbo, J., S.S. Hurd, A.G. Agusti, P.W. Jones, C. Vogelmeier, A. Anzueto, P.J. Barnes, L.M. Fabbri, F.J. Martinez, M. Nishimura, R.A. Stockley, D.D. Sin, and R. Rodriguez-Roisin. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med. 187:347–365, 2013.

    Article  CAS  PubMed  Google Scholar 

  32. Weibel, E.R., H. Parameswaran, A. Majumdar, S. Ito, A.M. Alencar, B. Suki, W. Mitzner, C.C.W. Hsia, H. Fehrenbach, J.P. Butler. Morphological quantitation of emphysema: a debate. J. Appl. Physiol. 100:1419–1421, 2006.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

J. Victor Marcos is a research fellow at Institute of Optics (CSIC) under the “Juan de la Cierva” program funded by the Spanish Ministry of Economy and Competitiveness. This work has been partly funded by the grants “MINECO DPI2012-38090-C03-02” and “TEC2013-48552-C2-1-R” from the Spanish Ministry of Economy and Competitiveness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Víctor Marcos.

Additional information

Associate Editor Merryn Tawhai oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcos, J.V., Muñoz-Barrutia, A., Ortiz-de-Solórzano, C. et al. Quantitative Assessment of Emphysema Severity in Histological Lung Analysis. Ann Biomed Eng 43, 2515–2529 (2015). https://doi.org/10.1007/s10439-015-1251-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1251-5

Keywords

Navigation