Skip to main content
Log in

Local Quantification of Wall Thickness and Intraluminal Thrombus Offer Insight into the Mechanical Properties of the Aneurysmal Aorta

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Wall stress is a powerful tool to assist clinical decisions in rupture risk assessment of abdominal aortic aneurysms. Key modeling assumptions that influence wall stress magnitude and distribution are the inclusion or exclusion of the intraluminal thrombus in the model and the assumption of a uniform wall thickness. We employed a combined numerical-experimental approach to test the hypothesis that abdominal aortic aneurysm (AAA) wall tissues with different thickness as well as wall tissues covered by different thrombus thickness, exhibit differences in the mechanical behavior. Ultimate tissue strength was measured from in vitro tensile testing of AAA specimens and material properties of the wall were estimated by fitting the results of the tensile tests to a histo-mechanical constitutive model. Results showed a decrease in tissue strength and collagen stiffness with increasing wall thickness, supporting the hypothesis of wall thickening being mediated by accumulation of non load-bearing components. Additionally, an increase in thrombus deposition resulted in a reduction of elastin content, collagen stiffness and tissue strength. Local wall thickness and thrombus coverage may be used as surrogate measures of local mechanical properties of the tissue, and therefore, are possible candidates to improve the specificity of AAA wall stress and rupture risk evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Adolph, R., D. A. Vorp, D. L. Steed, M. W. Webster, M. V. Kameneva, and S. C. Watkins. Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J. Vasc. Surg. 5:916–926, 1997.

    Article  Google Scholar 

  2. Belytschko, T., I. L. Jerry, and C. S. Tsay. Explicit algorithms for the nonlinear dynamics of shells. Comput. Methods Appl. Mech. 42:225–251, 1984.

    Article  Google Scholar 

  3. Campbell, E. J., and M. S. Wald. Hypoxic injury to human alveolar macrophages accelerates release of previously bound neutro-phil elastase: implications for lung connective tissue injury including pulmonary emphysema. Am. Rev. Respir. Dis. 127:631–635, 1983.

    CAS  PubMed  Google Scholar 

  4. Choksy, S. A., A. B. Wilmink, and C. R. Quick. Ruptured abdominal aortic aneurysm in the Huntingdon district: a 10-year experience. Ann. R. Coll. Surg Engl. 81:27–31, 1999.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Compeau, C. G., J. Ma, K. N. DeCampos, T. K. Waddell, G. F. Brisseau, A. S. Slutsky, and O. D. Rotstein. In situ ischemia and hypoxia enhance alveolar macrophage tissue factor expression. Am. J. Respir. Cell Mol. Biol. 11:446–455, 1994.

    Article  CAS  PubMed  Google Scholar 

  6. Darling, R. C., C. R. Messina, D. C. Brewster, and L. W. Ottinger. Autopsy study of unoperated abdominal aortic aneurysms. Circulation 56(2):161–164, 1977.

    Google Scholar 

  7. Davies, M. J. Aortic aneurysm formation: lessons from human studies and experimental models. Circulation 98:193–195, 1998.

    Article  CAS  PubMed  Google Scholar 

  8. Di Martino, E. S., A. Bohra, J. P. Vande Geest, N. Gupta, M. Makaroun, and D. A. Vorp. Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J. Vasc. Surg. 43:570–576, 2006.

    Article  PubMed  Google Scholar 

  9. Fillinger, M. Who should we operate on and how do we decide: predicting rupture and survival in patients with aortic aneurysm. Semin. Vasc. Surg. 20(2):121–127, 2007.

    Article  PubMed  Google Scholar 

  10. Fillinger, M. F., S. P. Marra, M. L. Raghavan, and F. E. Kennedy. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37:724–732, 2003.

    Article  PubMed  Google Scholar 

  11. Folco, E. J., Y. Sheikine, V. Z. Rocha, T. Christen, E. Shvartz, G. K. Sukhova, M. F. Di Carli, and P. Libby. Hypoxia but not inflammation augments glucose uptake in human macrophages: implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy-d-glu-cose positron emission tomography. J. Am. Coll. Cardiol. 58(6):603–614, 2011.

    Article  CAS  PubMed  Google Scholar 

  12. Folkesson, M., A. Silveira, P. Eriksson, and J. Swedenborg. Protease activity in the multi-layered intra-luminal thrombus of abdominal aortic aneurysms. Atherosclerosis 218:294–299, 2011.

    Article  CAS  PubMed  Google Scholar 

  13. Galland, R. B., M. S. Whiteley, and T. R. Magee. The fate of patients undergoing surveillance of small abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. 16:104–109, 1998.

    Article  CAS  Google Scholar 

  14. Gasser, T. C., M. Auer, F. Labruto, J. Swedenborg, and J. Roy. Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. Eur. J. Vasc. Endovasc. Surg. 40:176–185, 2010.

    Article  CAS  PubMed  Google Scholar 

  15. Gasser, T. C., G. Görgülü, M. Folkesson, and J. Swedenborg. Failure properties of intra-luminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J. Vasc. Surg. 48:179–188, 2008.

    Article  PubMed  Google Scholar 

  16. Hans, S. S., O. Jareunpoon, M. Balasubramaniam, and G. B. Zelenock. Size and location of thrombus in intact and ruptured abdominal aortic aneurysms. J. Vasc. Surg. 41:584–588, 2005.

    Article  PubMed  Google Scholar 

  17. Heikkinen, M., J.-P. Salenius, and O. Auvinen. Ruptured abdominal aortic aneurysm in a well-defined geographical area. J. Vasc. Surg. 36:291–296, 2002.

    Article  CAS  PubMed  Google Scholar 

  18. Heng, M. S., M. J. Fagan, W. Collier, G. Desai, P. T. McCollum, and I. C. Chetter. Peak wall stress measurement in elective and acute abdominal aortic aneurysms. J. Vasc. Surg. 47:17–22, 2008.

    Article  PubMed  Google Scholar 

  19. Herrick, S. E., G. W. Ireland, D. Simon, C. N. McCollum, and M. W. Ferguson. Venous ulcer fibroblasts compared with normal fibroblasts show differences in collagen but not fibronectin production under both normal and hypoxic conditions. J. Invest. Dermatol. 106:187–193, 1996.

    Article  CAS  PubMed  Google Scholar 

  20. Kazi, M., J. Thyberg, P. Religa, J. Roy, P. Eriksson, U. Hedin, and J. Swedenborg. Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J. Vasc. Surg. 38:1283–1292, 2003.

    Article  PubMed  Google Scholar 

  21. Kazi, M., C. Zhu, J. Roy, G. Paulsson-Berne, A. Hamsten, J. Swedenborg, U. Hedin, and P. Eriksson. 2005 Difference in matrix-degrading protease expression and activity between thrombus-free and thrombus-covered wall of abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 25:1341–1346, 2005.

    Article  CAS  PubMed  Google Scholar 

  22. Koole, D., H. J. A. Zandvoort, A. Schoneveld, A. Vink, J. A. Vos, L. L. van den Hoogen, J. P. P. M. de Vries, G. Pasterkamp, F. L. Moll, and J. A. van Herwaarden. Intraluminal abdominal aortic aneurysm thrombus is associated with disruption of wall integrity. J. Vasc. Surg. 57(1):77–83, 2013.

    Article  PubMed  Google Scholar 

  23. Kotze, C., A. Groves, L. Menezes, R. Harvey, R. Endozo, I. Kayani, P. Ell, and S. Yusuf. What is the relationship between 18F-FDG aortic aneurysm uptake on PET/CT and future growth rate? Eur. J. Nucl. Med. Mol. Imaging 38(8):1493–1499, 2011.

    Article  PubMed  Google Scholar 

  24. Lanir, Y. Constitutive equations for fibrous connective tissues. J. Biomech. 16(1):1–12, 1983.

    Article  CAS  PubMed  Google Scholar 

  25. Maier, A., M. W. Gee, C. Reeps, J. Pongratz, H. H. Ecksteinand, and W. A. Wall. A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann. Biomed. Eng. 38:3124–3134, 2010.

    Article  CAS  PubMed  Google Scholar 

  26. Martufi, G., E. S. Di Martino, C. H. Amon, S. C. Muluk, and E. A. Finol. Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution. J. Biomech. Eng. 31(6):061015, 2009.

    Article  Google Scholar 

  27. Martufi, G., and T. C. Gasser. A constitutive model for vascular tissue that integrates fibril, fiber and continuum levels with application to the isotropic and passive properties of the infrarenal aorta. J. Biomech. 44:2544–2550, 2011.

    Article  PubMed  Google Scholar 

  28. Martufi, G., and T. C. Gasser. Turnover of fibrillar collagen in soft biological tissue with application to the expansion of abdominal aortic aneurysms. J. R. Soc. Interface 9(77):3366–3377, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Martufi, G., and T. C. Gasser. Review: the role of biomechanical modeling in the rupture risk assessment for abdominal aortic aneurysms. J. Biomech. Eng. 135(2):021010, 2013.

    Article  PubMed  Google Scholar 

  30. McMillan, W. D., B. K. Patterson, R. R. Keen, and W. H. Pearch. In situ localization and quantification of seventy-two-kilodalton type IV collagenase in aneurysmal, occlusive, and normal aorta. J. Vasc. Surg. 22:295–305, 1995.

    Article  CAS  PubMed  Google Scholar 

  31. Nchimi, A., J. P. Cheramy-Bien, T. C. Gasser, G. Namur, P. Gomez, L. Seidel, A. Albert, J. O. Defraigne, N. Labropoulos, and N. Sakalihasan. Multifactorial relationship between 18f-fluoro-deoxy glucose positron emission tomography signaling and biomechanical properties in unruptured aortic aneurysms. Circ. Cardiovasc. Imaging. 7(1):82–91, 2014.

    Article  PubMed  Google Scholar 

  32. Newman, K. M., J. Jean-Claude, L. Hong, J. V. Scholes, Y. Ogata, H. Nagase, and M. D. Tilson. Cellular localization of matrix metalloproteinases in the abdominal aortic aneurysm wall. J. Vasc. Surg. 20:814–820, 1994.

    Article  CAS  PubMed  Google Scholar 

  33. Nicholls, S. C., J. B. Gardner, M. H. Meissner, and K. Johansen. Rupture in small abdominal aortic aneurysms. J. Vasc. Surg. 28:884–888, 1998.

    Article  CAS  PubMed  Google Scholar 

  34. Ogden, R. W. Non-linear elastic deformations. New York, NY: Dover, 1997.

    Google Scholar 

  35. Raghavan, M. L., J. Kratzberg, E. M. CastrodeTolosa, M. M. Hanaoka, P. Walker, and E. S. daSilva. Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J. Biomech. 39:3010–3016, 2006.

  36. Raut, S. S., A. Jana, V. De Oliveira, S. C. Muluk, and E. A. Finol. The importance of patient-specific regionally varying wall thickness in abdominal aortic aneurysm biomechanics. J. Biomech. Eng. 135(8):081010, 2013.

    Article  Google Scholar 

  37. Reeps, C., A. Maier, J. Pelisek, F. Härtl, V. Grabher-Meier, W. A. Wall, M. Essler, H. H. Eckstein, and M. W. Gee. Measuring and modeling patient-specific distributions of material properties in abdominal aortic aneurysm wall. Biomech. Model. Mechanobiol. 12:717–733, 2012.

    Article  PubMed  Google Scholar 

  38. Rizzo, R. J., W. J. McCarthy, S. N. Dixit, M. P. Lilly, V. P. Shively, W. R. Flinn, and J. S. T. Yao. Collagen types and matrix protein content in human abdominal aortic aneurysms. J. Vasc. Surg. 10(4):365–373, 1989.

    Article  CAS  PubMed  Google Scholar 

  39. Rodriguez, J. F., G. Martufi, M. Doblare, and E. A. Finol. The effect of material model formulation in the stress analysis of abdominal aortic aneurysms. Ann. Biomed. Eng. 37(11):2218–2221, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Shang, E. K., D. P. Nathan, R. M. Fairman, E. Y. Woo, G. J. Wang, R. C. Gorman, J. H. Gorman III, and B. M. Jackson. Local wall thickness in finite element models improves prediction of abdominal aortic aneurysm growth. J. Vasc. Surg., 61(1):217–223, 2015.

  41. Shum, J., E. S. DiMartino, A. Goldhammer, D. Goldman, L. Acker, G. Patel, J. H. Ng, G. Martufi, and E. A. Finol. Semi-automatic vessel wall detection and quantification of wall thickness in CT images of human abdominal aortic aneurysms. Med. Phys. 37:638–648, 2010.

    Article  PubMed  Google Scholar 

  42. Steinbrech, D. S., M. T. Longaker, B. J. Mehrara, P. B. Saadeh, G. S. Chin, R. P. Gerrets, D. C. Chau, N. M. Rowe, and G. K. Gittes. Fibroblast response to hypoxia: the relationship between angiogenesis and matrix regulation. J. Surg. Res. 84:127–133, 1999.

    Article  CAS  PubMed  Google Scholar 

  43. The UK Small Aneurysm Trial Participants. Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. Lancet. 352:1649–1655, 1998.

  44. Upchurch, Jr., G. R., and T. A. Schaub. Abdominal aortic aneurysm. Am. Family Physician 73:1198–1204, 2006.

    Google Scholar 

  45. Vande Geest, J. P., E. S. Di Martino, A. Bohra, M. S. Makaroun, and D. A. Vorp. A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application. Ann. N. Y. Acad. Sci. 1085:11–21, 2006.

    Article  PubMed  Google Scholar 

  46. Venkatasubramaniam, A. K., M. J. Fagan, T. Mehta, K. J. Mylankal, B. Ray, G. Kuhan, I. C. Chetter, and P. T. McCollum. A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur J. Vasc. Surg. 28:168–176, 2004.

    CAS  Google Scholar 

  47. Vorp, D. A., P. C. Lee, D. H. Wang, M. S. Makaroun, E. M. Nemoto, S. Ogawa, and M. W. Webster. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J. Vasc. Surg. 34:291–299, 2001.

    Article  CAS  PubMed  Google Scholar 

  48. Vorp, D. A., and J. P. Vande Geest. Biomechanical determinants of abdominal aortic aneurysm rupture. Arterioscler. Thromb. Vasc. Biol. 25:1558–1566, 2005.

    Article  CAS  PubMed  Google Scholar 

  49. Vorp, D. A., D. H. J. Wang, M. W. Webster, and W. J. Federspiel. Effect of intraluminal thrombus thickness and bulge diameter on the oxygen flow in abdominal aortic aneurysm. J. Biomech. Eng. 120:579–583, 1998.

    Article  CAS  PubMed  Google Scholar 

  50. Wang, D., M. Makaroun, M. Webster, and D. A. Vorp. Effect of intraluminal thrombus on wall stress in patient specific models of abdominal aortic aneurysm. J. Vasc. Surg. 36:598–604, 2002.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was partially funded by NIH Grant R01 HL07931301 to DAV, NSERC Discovery Grant to EDM and MITACS Postdoctoral Elevate Award to GM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampaolo Martufi.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martufi, G., Satriano, A., Moore, R.D. et al. Local Quantification of Wall Thickness and Intraluminal Thrombus Offer Insight into the Mechanical Properties of the Aneurysmal Aorta. Ann Biomed Eng 43, 1759–1771 (2015). https://doi.org/10.1007/s10439-014-1222-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1222-2

Keywords

Navigation