Skip to main content
Log in

Optical Flow-Based Tracking of Needles and Needle-Tip Localization Using Circular Hough Transform in Ultrasound Images

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Image-guided interventions have become the standard of care for needle-based procedures. The success of the image-guided procedures depends on the ability to precisely locate and track the needle. This work is primarily focused on 2D ultrasound-based tracking of a hollow needle (cannula) that is composed of straight segments connected by shape memory alloy actuators. An in-plane tracking algorithm based on optical flow was proposed to track the cannula configuration in real-time. Optical flow is a robust tracking algorithm that can easily run on a CPU. However, the algorithm does not perform well when it is applied to the ultrasound images directly due to the intensity variation in the images. The method presented in this work enables using the optical flow algorithm on ultrasound images to track features of the needle. By taking advantage of the bevel tip, Circular Hough transform was used to accurately locate the needle tip when the imaging is out-of-plane. Through experiments inside tissue phantom and ex-vivo experiments in bovine kidney, the success of the proposed tracking methods were demonstrated. Using the methods presented in this work, quantitative information about the needle configuration is obtained in real-time which is crucial for generating control inputs for the needle and automating the needle insertion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Aboofazeli, M., P. Abolmaesumi, P. Mousavi, and G. Fichtinger. A new scheme for curved needle segmentation in three-dimensional ultrasound images. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI), pp. 1067–1070, 2009.

  2. Adebar, T. K., and A. Okamura. 3D segmentation of curved needles using doppler ultrasound and vibration. In: Information Processing in Computer-Assisted Interventions. Lecture Notes in Computer Science, vol. 7915, pp. 61–70, 2013.

  3. Ayvali, E., and J. P. Desai. Towards a discretely actuated steerable cannula. In: 2012 IEEE International Conference on Robotics and Automation (ICRA) pp. 1614–1619, 2012.

  4. Ayvali, E., C. Liang, M. Ho, Y. Chen, and J. P. Desai. Towards a discretely actuated steerable cannula for diagnostic and therapeutic procedures. Int. J. Robotics Res. 31:588–603, 2012.

    Article  Google Scholar 

  5. Bouguet, J. Y. Pyramidal Implementation of the Lucas Kanade Feature Tracker. Intel Corporation, Microprocessor Research Labs, 2000.

  6. Bradski, G. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

  7. Bradski, G., and A. Kaehler. Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly Media, 2008.

  8. Chatelain, P., A. Krupa, and M. Marchal. Real-time needle detection and tracking using a visually servoed 3D ultrasound probe. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1676–1681, May 2013.

  9. Chen, X., L. Lu, and Y. Gao. A new concentric circle detection method based on Hough transform. In: International Conference on Computer Science Education (ICCSE), pp. 753–758, 2012.

  10. Deans, S. R. Hough transform from the radon transform. IEEE Trans. Pattern Anal. Mach. Intell. 3:185–188, 1981.

  11. Ding, M., and A. Fenster. A real-time biopsy needle segmentation technique using Hough transform. Med. Phys. 30:2222–2233, 2003.

    Article  PubMed  Google Scholar 

  12. Dong, B., E. Savitsky, and S. Osher. A novel method for enhanced needle localization using ultrasound-guidance. In: Advances in Visual Computing. Lecture Notes in Computer Science, vol. 5875. Berlin: Springer, pp. 914–923, 2009.

  13. Duan, Q., K. M. Parker, A. Lorsakul, E. D. Angelini, E. Hyodo, J.W. Homma, S., Holmes, and A. F. Laine. Quantitative validation of optical flow based myocardial strain measures using sonomicrometry. In: Proceedings of IEEE International Symposium Biomedicin Imaging, vol. 2009, pp. 454–457, Jun 2009.

  14. Duda, R. O., and P. E. Hart. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15:11–15, 1972.

    Article  Google Scholar 

  15. Fichtinger, G., J. Fiene, C. Kennedy, G. Kronreif, I. Iordachita, D. Song, E. C. Burdette, and P. Kazanzides. Robotic assistance for ultrasound-guided prostate brachytherapy. Med. Image Anal. 12:535–545, 2008.

    Article  PubMed  Google Scholar 

  16. Golemati, S., J. Stoitsis, E. G. Sifakis, T. Balkizas, and K. S. Nikita. Using the Hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery. Ultrasound Med. Biol. 33:1918–1932, 2007.

    Article  PubMed  Google Scholar 

  17. Gottlieb, R. H., W. B. Robinette, D. J. Rubens, D. F. Hartley, P. J. Fultz, and M.R. Violante. Coating agent permits improved visualization of biopsy needles during sonography. Am. J. Roentgenol. 171:1301–1302, 1998.

    Article  CAS  Google Scholar 

  18. Hata, N., J. Tokuda, S. Hurwitz, and S. Morikawa. Mri-compatible manipulator with remotecenter-of-motion control, J. Magn. Reson. Imaging 27:1130–1138, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Hendriks, C., M. van Ginkel, P. Verbeek, and L. J. van Vliet. The generalized radon transform: sampling, accuracy and memory considerations. Pattern Recognit. 38:2494–2505, 2005.

    Article  Google Scholar 

  20. Hong, J., T. Dohi, M. Hashizume, K. Konishi, and N. Hata. An ultrasound-driven needle insertion robot for percutaneous cholecystostomy. Phys. Med. Biol. 49:441, 2000.

    Article  Google Scholar 

  21. Hong, J. S., T. Dohi, M. Hasizume, K. Konishi, and N. Hata. A motion adaptable needle placement instrument based on tumor specific ultrasonic image segmentation. In: Medical Image Computing and Computer-Assisted Intervention MICCAI 2002. Lecture Notes in Computer Science, vol. 2488. Berlin: Springer, pp. 122–129, 2002

  22. Hongliang, R., and P. Dupont. Tubular enhanced geodesic active contours for continuum robot detection using 3D ultrasound. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2907–2912, May 2012.

  23. Lucas, B., and T. Kanade. An iterative image registration technique with an application to stereo vision. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674–679, 1981.

  24. Mascott, C.R. Comparison of magnetic tracking and optical tracking by simultaneous use of two independent frameless stereotactic systems. Neurosurgery 57:295–301, 2005.

    Article  PubMed  Google Scholar 

  25. Mehrabani, B., V. Tavakoli, M. Abolhassani, J. Alirezaie, and A. Ahmadian. An efficient temperature estimation using optical-flow in ultrasound b-mode digital images. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2008), pp. 86–89, Aug 2008.

  26. Neshat, H., and R. Patel. Real-time parametric curved needle segmentation in 3D ultrasound images. In: 2nd IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BIOROB), pp. 670–675, 2008.

  27. Neubach, Z., and M. Shoham. Ultrasound-guided robot for flexible needle steering. IEEE Trans. Biomed.Eng. 57:799–805, 2010.

    Article  PubMed  Google Scholar 

  28. Novotny, P., J. A. Stoll, N. V. Vasilyev, P. J. del Nido, P. E. Dupont, T. E. Zickler, and R. D. Howe. GPU based real-time instrument tracking with three-dimensional ultrasound.Med. Image Anal. 11:458–464, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Qiaoliang, L., N. Dong, Y. Wanguan, C. Siping, W. Tianfu, and C. Xin. Use of optical flow to estimate continuous changes in muscle thickness from ultrasound image sequences. Ultrasound Med. Biol. 39:2194–2201, 2013.

    Article  Google Scholar 

  30. Sekhar, S., W. Al-Nuaimy, and A. Nandi. Automated localisation of retinal optic disk using Hough transform. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro(ISBI 2008), pp. 1577–1580, May 2008.

  31. Shi, J., and C. Tomasi. Good features to track. In: 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 593–600, 1994.

  32. Tanaka, K. A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior. Res. Mech. 18:251–263, 1986.

    Google Scholar 

  33. van Stralen, M., K. Leung, M. Voormolen, N. de Jong, A. van der Steen, J. Reiber, and J. Bosch, Time continuous detection of the left ventricular long axis and the mitral valve plane in 3-d echocardiography. Ultrasound Med. Biol. 34:196–207, 2008.

    Article  PubMed  Google Scholar 

  34. Vrooijink, G., M. Abayazid, and S.Misra. Real-time three-dimensional flexible needle tracking using two-dimensional ultrasound. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1676–1681, 2013.

  35. Yang, B., U. Tan, A. McMillan, R. Gullapalli, and J. Desai. Towards the development of a master-slave surgical system for breast biopsy under continuous MRI. In: 13th International Symposium on Experimental Robotics, Qubec City, Canada, June 2012.

Download references

Acknowledgments

The project described was supported by Award Number R01EB008713 from the National Institute Of Biomedical Imaging And Bioengineering. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute Of Biomedical Imaging And Bioengineering or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Ayvali.

Additional information

Associate Editor Dan Elson oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayvali, E., Desai, J.P. Optical Flow-Based Tracking of Needles and Needle-Tip Localization Using Circular Hough Transform in Ultrasound Images. Ann Biomed Eng 43, 1828–1840 (2015). https://doi.org/10.1007/s10439-014-1208-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1208-0

Keywords

Navigation