Skip to main content
Log in

Bio-Chemo-Mechanical Models of Vascular Mechanics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Models of vascular mechanics are necessary to predict the response of an artery under a variety of loads, for complex geometries, and in pathological adaptation. Classic constitutive models for arteries are phenomenological and the fitted parameters are not associated with physical components of the wall. Recently, microstructurally-linked models have been developed that associate structural information about the wall components with tissue-level mechanics. Microstructurally-linked models are useful for correlating changes in specific components with pathological outcomes, so that targeted treatments may be developed to prevent or reverse the physical changes. However, most treatments, and many causes, of vascular disease have chemical components. Chemical signaling within cells, between cells, and between cells and matrix constituents affects the biology and mechanics of the arterial wall in the short- and long-term. Hence, bio-chemo-mechanical models that include chemical signaling are critical for robust models of vascular mechanics. This review summarizes bio-mechanical and bio-chemo-mechanical models with a focus on large elastic arteries. We provide applications of these models and challenges for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Agianniotis, A., R. Rezakhaniha, and N. Stergiopulos. A structural constitutive model considering angular dispersion and waviness of collagen fibres of rabbit facial veins. Biomed. Eng. Online 10:18, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Agianniotis, A., A. Rachev, and N. Stergiopulos. Active axial stress in mouse aorta. J. Biomech. 45:1924–1927, 2012.

    Article  CAS  PubMed  Google Scholar 

  3. Agrawal, V., S. A. Kollimada, A. G. Byju, and N. Gundiah. Regional variations in the nonlinearity and anisotropy of bovine aortic elastin. Biomech. Model Mechanobiol. 12:1181–1194, 2013.

    Article  PubMed  Google Scholar 

  4. Alford, P. W., and L. A. Taber. Computational study of growth and remodelling in the aortic arch. Comput. Methods Biomech. Biomed. Eng. 11:525–538, 2008.

    Article  Google Scholar 

  5. Astrand, H., J. Stalhand, J. Karlsson, M. Karlsson, B. Sonesson, and T. Lanne. In vivo estimation of the contribution of elastin and collagen to the mechanical properties in the human abdominal aorta: Effect of age and sex. J. Appl. Physiol. (Bethesda, MD 1985) 110:176–187, 2011.

    Article  CAS  Google Scholar 

  6. Baek, S., A. Valentin, and J. D. Humphrey. Biochemomechanics of cerebral vasospasm and its resolution: Ii. Constitutive relations and model simulations. Ann. Biomed. Eng. 35:1498–1509, 2007.

    Article  CAS  PubMed  Google Scholar 

  7. Bol, M., A. Schmitz, G. Nowak, and T. Siebert. A three-dimensional chemo-mechanical continuum model for smooth muscle contraction. J. Mech. Behav. Biomed. Mater. 13:215–229, 2012.

    Article  PubMed  Google Scholar 

  8. Carlson, B. E., and T. W. Secomb. A theoretical model for the myogenic response based on the length-tension characteristics of vascular smooth muscle. Microcirculation 12:327–338, 2005.

    Article  PubMed  Google Scholar 

  9. Chen, J., S. Zhuo, X. Jiang, X. Zhu, L. Zheng, S. Xie, B. Lin, and H. Zeng. Multiphoton microscopy study of the morphological and quantity changes of collagen and elastic fiber components in keloid disease. J. Biomed. Opt. 16:051305, 2011.

    Article  PubMed  Google Scholar 

  10. Cheng, J. K., I. Stoilov, R. P. Mecham, and J. E. Wagenseil. A fiber-based constitutive model predicts changes in amount and organization of matrix proteins with development and disease in the mouse aorta. Biomech. Model Mechanobiol. 12:497–510, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Chuong, C. J., and Y. C. Fung. Three-dimensional stress distribution in arteries. ASME J. Biomech. Eng. 105:268–274, 1983.

    Article  CAS  Google Scholar 

  12. Cipolla, M. J., N. I. Gokina, and G. Osol. Pressure-induced actin polymerization in vascular smooth muscle as a mechanism underlying myogenic behavior. FASEB J. 16:72–76, 2002.

    Article  CAS  PubMed  Google Scholar 

  13. Couet, F., and D. Mantovani. How to optimize maturation in a bioreactor for vascular tissue engineering: focus on a decision algorithm for experimental planning. Ann. Biomed. Eng. 38:2877–2884, 2010.

    Article  PubMed  Google Scholar 

  14. Cox, R. H. Arterial wall mechanics and composition and the effects of smooth muscle activation. Am. J. Physiol. 229:807–812, 1975.

    CAS  PubMed  Google Scholar 

  15. Cox, R. H. Regional variation of series elasticity in canine arterial smooth muscles. Am. J. Physiol. 234:H542–H551, 1978.

    CAS  PubMed  Google Scholar 

  16. Dobrin, P. B. Influence of initial length on length-tension relationship of vascular smooth muscle. Am. J. Physiol. 225:664–670, 1973.

    CAS  PubMed  Google Scholar 

  17. Dobrin, P. B. Mechanical properties of arteries. Physiol. Rev. 58:397–460, 1978.

    CAS  PubMed  Google Scholar 

  18. Dobrin, P. B., and T. R. Canfield. Elastase, collagenase, and the biaxial elastic properties of dog carotid artery. Am. J. Physiol. 247:H124–H131, 1984.

    CAS  PubMed  Google Scholar 

  19. Driessen, N. J., C. V. Bouten, and F. P. Baaijens. A structural constitutive model for collagenous cardiovascular tissues incorporating the angular fiber distribution. J. Biomech. Eng. 127:494–503, 2005.

    Article  PubMed  Google Scholar 

  20. Ferruzzi, J., M. J. Collins, A. T. Yeh, and J. D. Humphrey. Mechanical assessment of elastin integrity in fibrillin-1-deficient carotid arteries: implications for marfan syndrome. Cardiovasc. Res. 92:287–295, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Fonck, E., G. Prod’hom, S. Roy, L. Augsburger, D. A. Rufenacht, and N. Stergiopulos. Effect of elastin degradation on carotid wall mechanics as assessed by a constituent-based biomechanical model. Am. J. Physiol. Heart Circ. Physiol. 292:H2754–H2763, 2007.

    Article  CAS  PubMed  Google Scholar 

  22. Fridez, P., A. Rachev, J. J. Meister, K. Hayashi, and N. Stergiopulos. Model of geometrical and smooth muscle tone adaptation of carotid artery subject to step change in pressure. Am. J. Physiol. Heart Circ. Physiol 280:2752–2760, 2001.

    Google Scholar 

  23. Fung, Y. C., and S. Q. Liu. Strain distribution in small blood vessels with zero-stress state taken into consideration. Am. J. Physiol. 262:H544–H552, 1992.

    CAS  PubMed  Google Scholar 

  24. Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3:15–35, 2006.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Gleason, R. L., and J. D. Humphrey. A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover. J. Vasc. Res. 41:352–363, 2004.

    Article  CAS  PubMed  Google Scholar 

  26. Gleason, R. L., L. A. Taber, and J. D. Humphrey. A 2-d model of flow-induced alterations in the geometry, structure and properties of carotid arteries. J. Biomech. Eng. 126:371–381, 2004.

    Article  CAS  PubMed  Google Scholar 

  27. Gleason, R. L., W. W. Dye, and E. Wilson. Quantification of the mechanical behavior of carotid arteries from wild-type, dystrophin-deficient, and sarcoglycan-δ knockout mice. J. Biomech. 41:3213–3218, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Hai, C. M., and R. A. Murphy. Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol. 254:C99–C106, 1988.

    CAS  PubMed  Google Scholar 

  29. Haskett, D., G. Johnson, A. Zhou, U. Utzinger, and J. Van de Geest. Microstructural and biomechanical alterations of the human aorta as a function of age and location. Biomech. Model Mechanobiol. 9:725–736, 2010.

    Article  PubMed  Google Scholar 

  30. Hayenga, H. N., B. C. Thorne, S. M. Peirce, and J. D. Humphrey. Ensuring congruency in multiscale modeling: towards linking agent based and continuum biomechanical models of arterial adaptation. Ann. Biomed. Eng. 39:2669–2682, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Hill, A. V. The heat of shortening and dynamic constants of muscle. Proc. R. Soc. Lond. B 126:136–195, 1938.

    Article  Google Scholar 

  32. Hill, M. R., X. Duan, G. A. Gibson, S. Watkins, and A. M. Robertson. A theoretical and non-destructive experimental approach for direct inclusion of measured collagen orientation and recruitment into mechanical models of the artery wall. J. Biomech. 45:762–771, 2012.

    Article  PubMed  Google Scholar 

  33. Holzapfel, G. A., and H. W. Weizsacker. Biomechanical behavior of the arterial wall and its numerical characterization. Comput. Biol. Med. 28:377–392, 1998.

    Article  CAS  PubMed  Google Scholar 

  34. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000.

    Article  Google Scholar 

  35. Horowitz, A., C. B. Menice, R. Laporte, and K. G. Morgan. Mechanisms of smooth muscle contraction. Physiol. Rev. 76:967–1003, 1996.

    CAS  PubMed  Google Scholar 

  36. Humphrey, J. D. Mechanics of the arterial wall: review and directions. Crit. Rev. Biomed. Eng. 23:1–162, 1995.

    CAS  PubMed  Google Scholar 

  37. Humphrey, J. D. Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem. Biophys. 50:53–78, 2008.

    Article  CAS  PubMed  Google Scholar 

  38. Humphrey, J. D., and K. R. Rajagopal. A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12:407–430, 2002.

    Article  Google Scholar 

  39. Humphrey, J. D., S. Baek, and L. E. Niklason. Biochemomechanics of cerebral vasospasm and its resolution: i. A new hypothesis and theoretical framework. Ann. Biomed. Eng. 35:1485–1497, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Huo, Y., Y. Cheng, X. Zhao, X. Lu, and G. S. Kassab. Biaxial vasoactivity of porcine coronary artery. Am. J. Physiol. Heart Circ. Physiol. 302:H2058–H2063, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Kim, J., J. W. Hong, and S. Baek. Longitudinal differences in the mechanical properties of the thoracic aorta depend on circumferential regions. J. Biomed. Mater Res. A 101:1525–1529, 2013.

    Article  PubMed  Google Scholar 

  42. Krahn, K. N., C. V. Bouten, S. Van Tuijl, M. A. Van Zandvoort, and M. Merkx. Fluorescently labeled collagen binding proteins allow specific visualization of collagen in tissues and live cell culture. Anal. Biochem. 350:177–185, 2006.

    Article  CAS  PubMed  Google Scholar 

  43. Kroon, M. A constitutive model for smooth muscle including active tone and passive viscoelastic behaviour. Math. Med. Biol. 27:129–155, 2010.

    Article  PubMed  Google Scholar 

  44. Lai, V. K., M. F. Hadi, R. T. Tranquillo, and V. H. Barocas. A multiscale approach to modeling the passive mechanical contribution of cells in tissues. J. Biomech. Eng. 135:71007, 2013.

    Article  PubMed  Google Scholar 

  45. Le, V. P., R. H. Knutsen, R. P. Mecham, and J. E. Wagenseil. Decreased aortic diameter and compliance precedes blood pressure increases in postnatal development of elastin-insufficient mice. Am. J. Physiol. Heart Circ. Physiol. 301:H221–H229, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Le, V. P., Y. Yamashiro, H. Yanagisawa, and J. E. Wagenseil. Measuring, reversing, and modeling the mechanical changes due to the absence of fibulin-4 in mouse arteries. Biomech. Model Mechanobiol. 13:1081–1095, 2014.

    Article  PubMed  Google Scholar 

  47. Maceri, F., M. Marino, and G. Vairo. A unified multiscale mechanical model for soft collagenous tissues with regular fiber arrangement. J. Biomech. 43:355–363, 2010.

    Article  PubMed  Google Scholar 

  48. Machyshyn, I. M., P. H. Bovendeerd, A. A. Van De Ven, P. M. Rongen, and F. N. Van De Vosse. A model for arterial adaptation combining microstructural collagen remodeling and 3d tissue growth. Biomech. Model Mechanobiol. 9:671–687, 2010.

    Article  CAS  PubMed  Google Scholar 

  49. Martufi, G., and T. C. Gasser. Turnover of fibrillar collagen in soft biological tissue with application to the expansion of abdominal aortic aneurysms. J. R. Soc. Interface 9:3366–3377, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Matsumoto, T., and K. Nagayama. Tensile properties of vascular smooth muscle cells: bridging vascular and cellular biomechanics. J. Biomech. 45:745–755, 2012.

    Article  PubMed  Google Scholar 

  51. Matsumoto, T., M. Tsuchida, and M. Sato. Change in intramural strain distribution in rat aorta due to smooth muscle contraction and relaxation. Am. J. Physiol. 271:H1711–H1716, 1996.

    CAS  PubMed  Google Scholar 

  52. Murtada, S. I., and G. A. Holzapfel. Investigating the role of smooth muscle cells in large elastic arteries: a finite element analysis. J. Theor. Biol. 358:1–10, 2014.

    Article  CAS  PubMed  Google Scholar 

  53. Murtada, S. I., M. Kroon, and G. A. Holzapfel. A calcium-driven mechanochemical model for prediction of force generation in smooth muscle. Biomech. Model. Mechanobiol. 9:749–762, 2010.

    Article  PubMed  Google Scholar 

  54. Murtada, S. I., M. Kroon, and G. A. Holzapfel. Modeling the dispersion effects of contractile fibers in smooth muscles. J. Mech. Phys. Solids 58:2065–2082, 2010.

    Article  CAS  Google Scholar 

  55. Murtada, S. C., A. Arner, and G. A. Holzapfel. Experiments and mechanochemical modeling of smooth muscle contraction: significance of filament overlap. J. Theor. Biol. 297:176–186, 2012.

    Article  PubMed  Google Scholar 

  56. Niklason, L. E., A. T. Yeh, E. A. Calle, Y. Bai, A. Valentin, and J. D. Humphrey. Enabling tools for engineering collagenous tissues integrating bioreactors, intravital imaging, and biomechanical modeling. Proc. Natl. Acad Sci. USA 107:3335–3339, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. O’connell, M. K., S. Murthy, S. Phan, C. Xu, J. Buchanan, R. Spilker, R. L. Dalman, C. K. Zarins, W. Denk, and C. A. Taylor. The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3d confocal and electron microscopy imaging. Matrix Biol. 27:171–181, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Rachev, A. Theoretical study of the effect of stress-dependent remodeling on arterial geometry under hypertensive conditions. J. Biomech. 30:819–827, 1997.

    Article  CAS  PubMed  Google Scholar 

  59. Rachev, A. A model of arterial adaptation to alterations in blood flow. J. Elast. 61:83–111, 2000.

    Article  Google Scholar 

  60. Rachev, A., and K. Hayashi. Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann. Biomed. Eng. 27:459–468, 1999.

    Article  CAS  PubMed  Google Scholar 

  61. Raykin, J., A. I. Rachev, and R. L. Gleason, Jr. A phenomenological model for mechanically mediated growth, remodeling, damage, and plasticity of gel-derived tissue engineered blood vessels. J. Biomech. Eng. 131:101016, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Rezakhaniha, R., E. Fonck, C. Genoud, and N. Stergiopulos. Role of elastin anisotropy in structural strain energy functions of arterial tissue. Biomech. Model Mechanobiol. 10:599–611, 2011.

    Article  CAS  PubMed  Google Scholar 

  63. Rezakhaniha, R., A. Agianniotis, J. T. C. Schrauwen, A. Griffa, D. Sage, C. V. C. Bouten, F. N. Van De Vosse, M. Unser, and N. Stergiopulos. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech. Model. Mechanobiol. 11:461–473, 2012.

    Article  CAS  PubMed  Google Scholar 

  64. Roach, M. R., and A. C. Burton. The reason for the shape of the distensibility curves of arteries. Can. J. Med. Sci. 35:681–690, 1957.

    CAS  Google Scholar 

  65. Roccabianca, S., C. Bellini, and J. D. Humphrey. Computational modelling suggests good, bad and ugly roles of glycosaminoglycans in arterial wall mechanics and mechanobiology. J. R. Soc. Interface 11:20140397, 2014.

    Article  CAS  PubMed  Google Scholar 

  66. Rodriguez, E. K., A. Hoger, and A. D. Mcculloch. Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27:455–467, 1994.

    Article  CAS  PubMed  Google Scholar 

  67. Ruddy, J. M., J. A. Jones, and J. S. Ikonomidis. Pathophysiology of thoracic aortic aneurysm (taa): is it not one uniform aorta? Role of embryologic origin. Progr. Cardiovasc. Dis. 56:68–73, 2013.

    Article  Google Scholar 

  68. Schmidt, T., D. Balzani, A. J. Schriefl, and G. A. Holzapfel. Material modeling of the damage behavior of arterial tissues. Biomedizinische Technik. Biomedical engineering 2013.

  69. Schmitz, A., and M. Bol. On a phenomenological model for active smooth muscle contraction. J. Biomech. 44:2090–2095, 2011.

    Article  PubMed  Google Scholar 

  70. Schriefl, A. J., H. Wolinski, P. Regitnig, S. D. Kohlwein, and G. A. Holzapfel. An automated approach for three-dimensional quantification of fibrillar structures in optically cleared soft biological tissues. J. R. Soc. Interface 10(80):20120760, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Shah, S. B., C. Witzenburg, M. F. Hadi, H. P. Wagner, J. M. Goodrich, P. W. Alford, and V. H. Barocas. Prefailure and failure mechanics of the porcine ascending thoracic aorta: experiments and a multiscale model. J. Biomech. Eng. 136:021028, 2014.

    Article  PubMed  Google Scholar 

  72. Sharifimajd, B., and J. Stalhand. A continuum model for excitation-contraction of smooth muscle under finite deformations. J. Theor. Biol. 355:1–9, 2014.

    Article  PubMed  Google Scholar 

  73. Stalhand, J., A. Klarbring, and G. A. Holzapfel. Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains. Progr. Biophys. Mol. Biol. 96:465–481, 2008.

    Article  CAS  Google Scholar 

  74. Stalhand, J., A. Klarbring, and G. A. Holzapfel. A mechanochemical 3d continuum model for smooth muscle contraction under finite strains. J. Theor. Biol. 268:120–130, 2011.

    Article  CAS  PubMed  Google Scholar 

  75. Stylianopoulos, T., and V. H. Barocas. Multiscale, structure-based modeling for the elastic mechanical behavior of arterial walls. J. Biomech. Eng. 129:611–618, 2007.

    Article  PubMed  Google Scholar 

  76. Taber, L. A., and D. W. Eggers. Theoretical study of stress-modulated growth in the aorta. J. Theor. Biol. 180:343–357, 1996.

    Article  CAS  PubMed  Google Scholar 

  77. Takamizawa, K., and K. Hayashi. Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20:7–17, 1987.

    Article  CAS  PubMed  Google Scholar 

  78. Tsamis, A., and N. Stergiopulos. Arterial remodeling in response to hypertension using a constituent-based model. Am. J. Physiol. Heart Circ. Physiol. 293:H3130–H3139, 2007.

    Article  CAS  PubMed  Google Scholar 

  79. Valentin, A., L. Cardamone, S. Baek, and J. D. Humphrey. Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. J. R. Soc. Interface 6:293–306, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Valentin, A., J. D. Humphrey, and G. A. Holzapfel. A multi-layered computational model of coupled elastin degradation, vasoactive dysfunction, and collagenous stiffening in aortic aging. Ann. Biomed. Eng. 39:2027–2045, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Wagenseil, J. E. A constrained mixture model for developing mouse aorta. Biomech. Model Mechanobiol. 10:671–687, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Wagenseil, J. E., and R. P. Mecham. New insights into elastic fiber assembly. Birth Defects Res. C Embryo Today 81:229–240, 2007.

    Article  CAS  PubMed  Google Scholar 

  83. Wagner, H. P., and J. D. Humphrey. Differential passive and active biaxial mechanical behaviors of muscular and elastic arteries: basilar vs. common carotid. J. Biomech. Eng. 133:051009, 2011.

    Article  CAS  PubMed  Google Scholar 

  84. Wan, W., H. Yanagisawa, and R. L. Gleason, Jr. Biomechanical and microstructural properties of common carotid arteries from fibulin-5 null mice. Ann. Biomed. Eng. 38:3605–3617, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Wang, N., J. D. Tytell, and D. E. Ingber. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nature reviews. Mol. Cell Biol. 10:75–82, 2009.

    CAS  Google Scholar 

  86. Wight, T. N. Cell biology of arterial proteoglycans. Arteriosclerosis 9:1–20, 1989.

    Article  CAS  PubMed  Google Scholar 

  87. Wolinsky, H., and S. Glagov. Structural basis for the static mechanical properties of the aortic media. Circ. Res. 14:400–413, 1964.

    Article  CAS  PubMed  Google Scholar 

  88. Wuyts, F. L., V. J. Vanhuyse, G. J. Langewouters, W. F. Decraemer, E. R. Raman, and S. Buyle. Elastic properties of human aortas in relation to age and atherosclerosis: a structural model. Phys. Med. Biol. 40:1577–1597, 1995.

    Article  CAS  PubMed  Google Scholar 

  89. Yang, J., J. W. Clark, Jr., R. M. Bryan, and C. Robertson. The myogenic response in isolated rat cerebrovascular arteries: smooth muscle cell model. Med. Eng. Phys. 25:691–709, 2003.

    Article  PubMed  Google Scholar 

  90. Yang, J., J. W. Clark, Jr., R. M. Bryan, and C. S. Robertson. The myogenic response in isolated rat cerebrovascular arteries: vessel model. Med. Eng. Phys. 25:711–717, 2003.

    Article  PubMed  Google Scholar 

  91. Zeinali-Davarani, S., and S. Baek. Medical image-based simulation of abdominal aortic aneurysm growth. Mech. Res. Commun. 42:107–117, 2012.

    Article  Google Scholar 

  92. Zeinali-Davarani, S., M. J. Chow, R. Turcotte, and Y. Zhang. Characterization of biaxial mechanical behavior of porcine aorta under gradual elastin degradation. Ann. Biomed. Eng. 41:1528–1538, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Zulliger, M. A., P. Fridez, K. Hayashi, and N. Stergiopulos. A strain energy function for arteries accounting for wall composition and structure. J. Biomech. 37:989–1000, 2004.

    Article  PubMed  Google Scholar 

  94. Zulliger, M. A., A. Rachev, and N. Stergiopulos. A constitutive formulation of arterial mechanics including vascular smooth muscle tone. Am. J. Physiol. Heart Circ. Physiol. 287:H1335–H1343, 2004.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH R01HL115560 and R01HL105314.

Conflict of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica E. Wagenseil.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Wagenseil, J.E. Bio-Chemo-Mechanical Models of Vascular Mechanics. Ann Biomed Eng 43, 1477–1487 (2015). https://doi.org/10.1007/s10439-014-1201-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1201-7

Keywords

Navigation