Skip to main content
Log in

Computing Muscle, Ligament, and Osseous Contributions to the Elbow Varus Moment During Baseball Pitching

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Baseball pitching imposes a dangerous valgus load on the elbow that puts the joint at severe risk for injury. The goal of this study was to develop a musculoskeletal modeling approach to enable evaluation of muscle–tendon contributions to mitigating elbow injury risk in pitching. We implemented a forward dynamic simulation framework that used a scaled biomechanical model to reproduce a pitching motion recorded from a high school pitcher. The medial elbow muscles generated substantial, protective, varus elbow moments in our simulations. For our subject, the triceps generated large varus moments at the time of peak valgus loading; varus moments generated by the flexor digitorum superficialis were larger, but occurred later in the motion. Increasing muscle–tendon force output, either by augmenting parameters associated with strength and power or by increasing activation levels, decreased the load on the ulnar collateral ligament. Published methods have not previously quantified the biomechanics of elbow muscles during pitching. This simulation study represents a critical advancement in the study of baseball pitching and highlights the utility of simulation techniques in the study of this difficult problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Alderink, A., T. Kepple, K. L. Siegel, A. Razzook, and S. Stanhope. Sources of forward ball velocity in a pitched baseball. Paper presented at 32nd Annual Meeting of the American Society of Biomechanics 2008; Ann-Arbor, MI.

  2. Anz, A. W., B. D. Bushnell, L. P. Griffin, T. J. Noonan, M. R. Torry, and R. J. Hawkins. Correlation of torque and elbow injury in professional baseball pitchers. Am. J. Sports Med. 38:1368–1374, 2010.

    Article  PubMed  Google Scholar 

  3. Arampatzis, A., K. Karamanidis, G. Morey-Klapsing, G. De Monte, and S. Stafilidis. Mechanical properties of the triceps surae tendon and aponeurosis in relation to intensity of sport activity. J. Biomech. 40:1946–1952, 2007.

    Article  PubMed  Google Scholar 

  4. Bogumill, G. P. Functional anatomy of the flexor tendon system of the hand. Hand Surgery. 7:33–46, 2002.

    Article  PubMed  Google Scholar 

  5. Buchanan, T. S., S. L. Delp, and J. A. Solbeck. Muscular resistance to varus and valgus loads at the elbow. J. Biomech. Eng.-T. ASME 120:634–639, 1998.

    Article  CAS  Google Scholar 

  6. Crowninshield, R. D., and R. A. Brand. A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 14:793–801, 1981.

    Article  CAS  PubMed  Google Scholar 

  7. Delp, S. L., F. C. Anderson, A. S. Arnold, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.

    Article  PubMed  Google Scholar 

  8. Duggan, J. P., U. C. Osadebe, J. W. Alexander, P. C. Noble, and D. M. Lintner. The impact of ulnar collateral ligament tear and reconstruction on contact pressures in the lateral compartment of the elbow. J. Shoulder Elb. Surg. 20:226–233, 2011.

    Article  Google Scholar 

  9. Eric, M., D. Krivokuca, S. Savovic, I. Leknan, and N. Vucinic. Prevalence of the palmaris longus through clinical evaluation. Surg. Radiol. Anat. 32:357–361, 2010.

    Article  PubMed  Google Scholar 

  10. Fleisig, G. S., J. R. Andrews, C. J. Dillman, and R. F. Escamilla. Kinetics of baseball pitching with implications about injury mechanisms. Am. J. Sports Med. 23:233–239, 1995.

    Article  CAS  PubMed  Google Scholar 

  11. Fleisig, G. S., D. S. Kingsley, J. W. Loftice, et al. Kinetic comparison among the fastball, curveball, change-up, and slider in collegiate baseball pitchers. Am. J. Sports Med. 34:423–430, 2006.

    Article  PubMed  Google Scholar 

  12. Fornalski, S., R. Gupta, and T. Q. Lee. Anatomy and biomechanics of the elbow joint. Sports. Med. Arthrosc. 11:1–9, 2003.

    Article  Google Scholar 

  13. Hamilton, C. D., R. E. Glousman, F. W. Jobe, J. Brault, M. Pink, and J. Perry. Dynamic stability of the elbow: electromyographic analysis of the flexor pronator group and the extensor group in pitchers with valgus instability. J. Shoulder Elb. Surg. 5:347–354, 1996.

    Article  CAS  Google Scholar 

  14. Hamner, S. R., and S. L. Delp. Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds. J. Biomech. 46:780–787, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Hamner, S. R., A. Seth, and S. L. Delp. Muscle contributions to propulsion and support during running. J. Biomech. 43:2709–2716, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Hariri, S., and M. R. Safran. Ulnar collateral ligament injury in the overhead athlete. Clin. Sports Med. 29:619–644, 2010.

    Article  PubMed  Google Scholar 

  17. Hirashima, M., and T. Ohtsuki. Exploring the mechanism of skilled overarm throwing. Exerc. Sport Sci. Rev. 36:205–211, 2008.

    Article  PubMed  Google Scholar 

  18. Holzbaur, K. R. S., S. L. Delp, G. E. Gold, and W. M. Murray. Moment-generating capacity of upper limb muscles in healthy adults. J. Biomech. 40:2442–2449, 2007.

    Article  PubMed  Google Scholar 

  19. Holzbaur, K. R. S., W. M. Murray, G. E. Gold, and S. L. Delp. Upper limb muscle volumes in adult subjects. J. Biomech. 40:742–749, 2007.

    Article  PubMed  Google Scholar 

  20. Hortobagyi, T., and F. I. Katch. Eccentric and concentric torque–velocity relationships during arm flexion and extension—influence of strength level. Eur. J. Appl. Physiol. O. 60:395–401, 1990.

    Article  CAS  Google Scholar 

  21. Kobayashi, K., K. J. Burton, C. Rodner, B. Smith, and A. E. Caputo. Lateral compression injuries in the pediatric elbow: Panner’s disease and osteochondritis dissecans of the capitellum. J. Am. Acad. Orthop. Sur. 12:246–254, 2004.

    Google Scholar 

  22. Kursa, K., E. Diao, L. Lattanza, and D. Rempel. In vivo forces generated by finger flexor muscles do not depend on the rate of fingertip loading during an isometric task. J. Biomech. 38:2288–2293, 2005.

    Article  PubMed  Google Scholar 

  23. Lin, F., N. Kohli, S. Perlmultter, D. Lim, G. W. Nuber, and M. Makhsous. Muscle contribution to elbow joint valgus stability. J. Shoulder Elb. Surg. 16:795–802, 2007.

    Article  Google Scholar 

  24. Lipps, D. B., Y. K. Oh, J. A. Ashton-Miller, and E. M. Wojtys. Effect of increased quadriceps tensile stiffness on peak anterior cruciate ligament strain during a simulated pivot landing. J. Orthopaed. Res. 32:423–430, 2014.

    Article  Google Scholar 

  25. Loren, G. J., and R. L. Lieber. Tendon biomechanical properties enhance human wrist muscle specialization. J. Biomech. 28:791–799, 1995.

    Article  CAS  PubMed  Google Scholar 

  26. Lu, T. W., and J. J. O’Connor. Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J. Biomech. 32:129–134, 1999.

    Article  CAS  PubMed  Google Scholar 

  27. McGraw, M. A., T. E. Kremchek, T. R. Hooks, and C. Papangelou. Biomechanical evaluation of the docking plus ulnar collateral ligament reconstruction technique compared with the docking technique. Am. J. Sports Med. 41:313–320, 2013.

    Article  PubMed  Google Scholar 

  28. Millard, M., T. Uchida, A. Seth, and S. L. Delp. Flexing computational muscle: modeling and simulation of musculotendon dynamics. J. Biomech. Eng.-T. ASME. 135:021005, 2013.

    Article  Google Scholar 

  29. Morrey, B. F., and K. N. An. Articular and ligamentous contributions to the stability of the elbow joint. Am. J. Sports Med. 11:315–319, 1983.

    Article  CAS  PubMed  Google Scholar 

  30. Nissen, C. W., M. Solomito, E. Garibay, S. Ounpuu, and M. Westwell. A biomechanical comparison of pitching from a mound versus flat ground in adolescent baseball pitchers. Sports Health 5:530–536, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Nissen, C. W., M. Westwell, S. Ounpuu, M. Patel, M. Solomito, and J. Tate. A biomechanical comparison of the fastball and curveball in adolescent baseball pitchers. Am. J. Sports Med. 37:1492–1498, 2009.

    Article  PubMed  Google Scholar 

  32. Official Baseball Rules. http://mlb.mlb.com/mlb/downloads/y2013/official_baseball_rules.pdf. Accessed March 27, 2014, 2014.

  33. Pomianowski, S., S. W. O’Driscoll, P. G. Neale, M. J. Park, B. F. Morrey, and K. N. An. The effect of forearm rotation on laxity and stability of the elbow. Clin. Biomech. 16:401–407, 2001.

    Article  CAS  Google Scholar 

  34. Remy, C. D., and D. G. Thelen. Optimal estimation of dynamically consistent kinematics and kinetics for forward dynamic simulation of gait. J. Biomech. Eng. 131:031005, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Saul, K. R., X. Hu, C. M. Goehler, et al. Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model. Comput. Methods Biomech. Biomed. Eng. 2014. doi:10.1080/10255842.2014.916698.

  36. Scovil, C. Y., and J. L. Ronsky. Sensitivity of a Hill-based muscle model to perturbations in model parameters. J. Biomech. 39:2055–2063, 2006.

    Article  PubMed  Google Scholar 

  37. Seiber, K., R. Gupta, M. H. McGarry, M. R. Safran, and T. Q. Lee. The role of the elbow musculature, forearm rotation, and elbow flexion in elbow stability: an in vitro study. J. Shoulder Elb. Surg. 18:260–268, 2009.

    Article  Google Scholar 

  38. Thelen, D. G. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J. Biomech. Eng.-T. ASME. 125:70–77, 2003.

    Article  Google Scholar 

  39. Thelen, D. G., F. C. Anderson, and S. L. Delp. Generating dynamic simulations of movement using computed muscle control. J. Biomech. 36:321–328, 2003.

    Article  PubMed  Google Scholar 

  40. Udall, J. H., M. J. Fitzpatrick, M. H. McGarry, T. B. Leba, and T. Q. Lee. Effects of flexor–pronator muscle loading on valgus stability of the elbow with an intact, stretched, and resected medial ulnar collateral ligament. J. Shoulder Elb. Surg. 18:773–778, 2009.

    Article  Google Scholar 

  41. Ward, S. R., G. J. Loren, S. Lundberg, and R. L. Lieber. High stiffness of human digital flexor tendons is suited for precise finger positional control. J. Neurophysiol. 96:2815–2818, 2006.

    Article  PubMed  Google Scholar 

  42. Xiang, Y., J. S. Arora, and K. Abdel-Malek. Optimization-based prediction of asymmetric human gait. J. Biomech. 44:683–693, 2011.

    Article  PubMed  Google Scholar 

  43. Zajac, F. E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17:359–411, 1989.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by NIH Grant: EB011615 and the Searle Funds of the Chicago Community Trust.

Conflicts of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy M. Murray.

Additional information

Associate Editor Amit Gefen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buffi, J.H., Werner, K., Kepple, T. et al. Computing Muscle, Ligament, and Osseous Contributions to the Elbow Varus Moment During Baseball Pitching. Ann Biomed Eng 43, 404–415 (2015). https://doi.org/10.1007/s10439-014-1144-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1144-z

Keywords

Navigation