Skip to main content
Log in

Pulse Timing During Irreversible Electroporation Achieves Enhanced Destruction in a Hindlimb Model of Cancer

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The use of irreversible electroporation (IRE) for cancer treatment has increased during the past decade due to many advantages over other focal therapies. However, despite early success in pre-clinical and clinical IRE trials, in vivo studies have shown that IRE suffers from an inability to destroy large volumes of cancer tissue without repeating treatment and/or increasing the applied electrical dose to dangerous levels. The present work demonstrates a simple method whereby treatment volumes can be enhanced by changing pulse timing (delivering pulsing in three trains, 30 s apart), without changing the electrical dose (51 pulses at pulse strengths of 600 V, durations of 50 µs, and repetition rates of 10 Hz), during IRE in a 3D hindlimb tumor model. Results show that 3 weeks of tumor growth delay was achieved with pulse timing compared to 1 week in baseline IRE (200% increase). Furthermore, the pulse timing approach does not introduce any foreign molecules into the body and can easily be integrated into existing treatment or enhancement protocols of IRE. The enhanced injury may correlate to longer pore exposures, or time during which pores exist on the membrane during pulse timing. This in turn increases the likelihood of membrane failure, and/or death from secondary injury such as loss of critical ions, proteins and other cellular components. In summary this work demonstrates a simple translational approach to increase 3D IRE treatment volumes in vivo by using pulse timing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Al-Sakere, B., F. André, C. Bernat, E. Connault, P. Opolon, R. V. Davalos, B. Rubinsky, and L. M. Mir. Tumor ablation with irreversible electroporation. PLoS ONE 2(11):e1135, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Appelbaum, L., E. Ben-David, M. Faroja, Y. Nissenbaum, and J. Sosna. Irreversible electroporation ablation: creation of large-volume ablation zones in in vivo porcine liver with four-electrode arrays. Radiology 270(2):416–424, 2014.

    Article  PubMed  Google Scholar 

  3. Benz, R., F. Beckers, and U. Zimmermann. Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study. J. Membr. Biol. 48(2):181–204, 1979.

    Article  CAS  PubMed  Google Scholar 

  4. Cannon, R., S. Ellis, D. Hayes, and G. Narayanan. RC Martin. Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures. J. Surg. Oncol. 107(5):544–549, 2013.

    Article  PubMed  Google Scholar 

  5. Davalos, R. V., B. Rubinsky, and L. M. Mir. Theoretical analysis of the thermal effects during in vivo tissue electroporation. Bioelectrochemistry 61(1–2):99–107, 2003.

    Article  CAS  PubMed  Google Scholar 

  6. Davalos, R. V., I. L. M. Mir, and B. Rubinsky. Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 33(2):223–231, 2005.

    Article  CAS  PubMed  Google Scholar 

  7. DeBruin, K. A., and W. Krassowska. Modeling electroporation in a single cell. I. Effects of field strength and rest potential. Biophys. J. 77(3):1213–1224, 1999.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Deodhar, A., S. Monette, G. W. Single, Jr., W. C. Hamilton, Jr., R. Thornton, M. Maybody, J. A. Coleman, and S. B. Solomon. Renal tissue ablation with irreversible electroporation: preliminary results in a porcine model. Urology 77(3):754–760, 2011.

    Article  PubMed  Google Scholar 

  9. Devireddy, R. V. Statistical thermodynamics of biomembranes. Cryobiology 60(1):80–90, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Edd, J. F., L. Horowitz, R. V. Davalos, L. M. Mir, and B. Rubinsky. In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans. Biomed. Eng. 53(7):1409–1415, 2006.

    Article  PubMed  Google Scholar 

  11. Ellis, T. L., P. A. Garcia, J. H. Rossmeisl, N. Henao-Guerrero, J. Robertson, and R. V. Davalos. Nonthermal irreversible electroporation for intracranial surgical applications. J. Neurosurg. 114(3):681–688, 2011.

    Article  PubMed  Google Scholar 

  12. Frandsen, S. K., H. Gissel, P. Hojman, T. Tramm, J. Eriksen, and J. Gehl. Direct therapeutic applications of calcium electroporation to effectively induce tumor necrosis. Cancer Res. 72(6):1336–1341, 2012.

    Article  CAS  PubMed  Google Scholar 

  13. Garcia, P. A., J. H. Rossmeisl, Jr., R. E. Neal, 2nd, T. L. Ellis, J. D. Olson, N. Henao-Guerrero, J. Robertson, and R. V. Davalos. Intracranial nonthermal irreversible electroporation: in vivo analysis. J. Membr. Biol. 236(1):127–136, 2010.

    Article  CAS  PubMed  Google Scholar 

  14. Gothelf, A., L. M. Mir, and J. Gehl. Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat. Rev. 29(5):371–387, 2003.

    Article  CAS  PubMed  Google Scholar 

  15. Guo, Y., Y. Zhang, R. Klein, G. M. Nijm, A. V. Sahakian, R. A. Omary, G.-Y. Yang, and A. C. Larson. Irreversible electroporation therapy in the liver: longitudinal efficacy studies in a rat model of hepatocellular carcinoma. Cancer Res. 70(4):1555–1563, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ivorra, A., B. Al-Sakere, B. Rubinsky, and L. M. Mir. In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome. Phys. Med. Biol. 54(19):5949–5963, 2009.

    Article  PubMed  Google Scholar 

  17. Jiang, C., Z. Qin, G. Long, and J. C. Bischof. An In Vitro Study on Adjuvant Enhanced Irreversible Electroporation. Presented at the Summer Bioengineering Conference. Farjardo, Puerto Rico, 2012.

  18. Jiang, C., Z. Qin, and J. Bischof. Membrane-targeting approaches for enhanced cancer cell destruction with irreversible electroporation. Ann. Biomed. Eng. 42(1):193–204, 2014.

  19. Jourabchi, N., K. Beroukhim, B. A. Tafti, S. T. Kee, and E. W. Lee. Irreversible electroporation (NanoKnife) in cancer treatment. Gastrointest. Interv. 3(1):8–18, 2014.

    Article  Google Scholar 

  20. Karatekin, E., O. Sandre, H. Guitouni, N. Borghi, P.-H. Puech, and F. Brochard-Wyart. Cascades of transient pores in giant vesicles: line tension and transport. Biophys. J. 84(3):1734–1749, 2003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Kinosita, Jr., K., and T. Y. Tsong. Voltage-induced conductance in human erythrocyte membranes. Biochim. Biophys. Acta (BBA) Biomembr 554(2):479–497, 1979.

    Article  CAS  Google Scholar 

  22. Krassowska, W., and P. D. Filev. Modeling electroporation in a single cell. Biophys. J. 92(2):404–417, 2007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Lavee, J., G. Onik, P. Mikus, and B. Rubinsky. A novel nonthermal energy source for surgical epicardial atrial ablation: irreversible electroporation. Heart Surg. Forum 10:162–167, 2007.

    Article  Google Scholar 

  24. Lee, R. C. Cell injury by electric forces. Ann. NY. Acad. Sci. 1066:85–91, 2005.

    Article  CAS  PubMed  Google Scholar 

  25. Lee, R. C., D. Zhang, and J. Hannig. Biophysical injury mechanisms in electrical shock trauma. Ann. Rev. Biomed. Eng. 2(1):477–509, 2000.

    Article  CAS  Google Scholar 

  26. Long, G., G. Bakos, P. K. Shires, L. Gritter, J. W. Crissman, J. L. Harris, and J. W. Clymer. Histological and finite element analysis of cell death due to irreversible electroporation. Technol. Cancer. Res. Treat. 13(6):561–569, 2014.

  27. Miklavčič, D., D. Šemrov, H. Mekid, and L. M. Mir. A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim. Biophys. Acta (BBA) 1523(1):73–83, 2000.

    Article  Google Scholar 

  28. Miller, L., J. Leor, and B. Rubinsky. Cancer cells ablation with irreversible electroporation. Technol. Cancer Res. Treat. 4(6):699–705, 2005.

    Article  PubMed  Google Scholar 

  29. Neal, 2nd, R. E., R. Singh, H. C. Hatcher, N. D. Kock, S. V. Torti, and R. V. Davalos. Treatment of breast cancer through the application of irreversible electroporation using a novel minimally invasive single needle electrode. Breast Cancer Res. Treat. 123(1):295–301, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Neal, R. E., P. A. Garcia, J. L. Robertson, and R. V. Davalos. Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning. IEEE Trans. Biomed. Eng. 59(4):1076–1085, 2012.

    Article  PubMed  Google Scholar 

  31. Onik, G., P. Mikus, and B. Rubinsky. Irreversible electroporation: implications for prostate ablation. Technol. Cancer Res. Treat. 6(4):295–300, 2007.

    Article  PubMed  Google Scholar 

  32. Qin, Z., J. Jiang, G. Long, B. Lindgren, and J. C. Bischof. Irreversible electroporation: an in vivo study with dorsal skin fold chamber. Ann. Biomed. Eng. 41(3):619–629, 2013.

    Article  PubMed  Google Scholar 

  33. Rubinsky, B., G. Onik, and P. Mikus. Irreversible electroporation: a new ablation modality—clinical implications. Technol. Cancer Res. Treat. 6(1):37–48, 2007.

    Article  PubMed  Google Scholar 

  34. Sano, M. B., R. E. Neal, 2nd, P. A. Garcia, D. Gerber, J. Robertson, and R. V. Davalos. Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion. Biomed. Eng. Online 9:83, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Sapareto, S. A., and W. C. Dewey. Thermal dose determination in cancer therapy. Int. J. Radiat. Oncol. Biol. Phys. 10(6):787–800, 1984.

    Article  CAS  PubMed  Google Scholar 

  36. Scheffer, H. J., K. Nielsen, M. C. de Jong, A. A. van Tilborg, J. M. Vieveen, A. R. Bouwman, S. Meijer, C. van Kuijk, P. M. van den Tol, and M. R. Meijerink. Irreversible electroporation for nonthermal tumor ablation in the clinical setting: a systematic review of safety and efficacy. J. Vasc. Intervent. Radiol. 25(7):997–1011, 2014.

    Article  Google Scholar 

  37. Serpersu, E. H., K. Kinosita, Jr., and T. Y. Tsong. Reversible and irreversible modification of erythrocyte membrane permeability by electric field. Biochim. Biophys. Acta (BBA) Biomembr. 812(3):779–785, 1985.

    Article  CAS  Google Scholar 

  38. Sersa, G., T. Jarm, T. Kotnik, A. Coer, M. Podkrajsek, M. Sentjurc, D. Miklavcic, M. Kadivec, S. Kranjc, A. Secerov, and M. Cemazar. Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. Br. J. Cancer 98(2):388–398, 2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Sersa, G., S. Kranjc, J. Scancar, M. Krzan, and M. Cemazar. Electrochemotherapy of mouse sarcoma tumors using electric pulse trains with repetition frequencies of 1 Hz and 5 kHz. J. Membr. Biol. 236(1):155–162, 2010.

    Article  CAS  PubMed  Google Scholar 

  40. Silve, A., A. Guimerà Brunet, B. Al-Sakere, A. Ivorra, and L. M. Mir. Comparison of the effects of the repetition rate between microsecond and nanosecond pulses: electropermeabilization-induced electro-desensitization? Biochim. Biophys. Acta (BBA) 1840(7):2139–2151, 2014.

    Article  CAS  Google Scholar 

  41. Tsong, T. Y. Electroporation of cell membranes. Biophys. J. 60(2):297–306, 1991.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Weaver, J. C., K. C. Smith, A. T. Esser, R. S. Son, and T. R. Gowrishankar. A brief overview of electroporation pulse strength–duration space: a region where additional intracellular effects are expected. Bioelectrochemistry 87:236–243, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Yarmush, M. L., A. Golberg, G. Serša, T. Kotnik, and D. Miklavčič. Electroporation-based technologies for medicine: principles, applications, and challenges. Ann. Rev. Biomed. Eng. 16:295–320, 2014.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JCB was supported by the Carl and Janet Kuhrmeyer Chair in the Department of Mechanical Engineering at the University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Bischof.

Additional information

Associate Editor Cheng Dong oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Shao, Q. & Bischof, J. Pulse Timing During Irreversible Electroporation Achieves Enhanced Destruction in a Hindlimb Model of Cancer. Ann Biomed Eng 43, 887–895 (2015). https://doi.org/10.1007/s10439-014-1133-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1133-2

Keywords

Navigation