Skip to main content
Log in

Calculating Intraventricular Pressure Difference Using a Multi-Beat Spatiotemporal Reconstruction of Color M-Mode Echocardiography

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This work aims to provide a methodology to improve the analysis of color-M-Mode (CMM) echocardiograms, as used to assess cardiac function. Specifically, we presented a methodology for the combined analysis of multiple heartbeat cycles and improve the accuracy of intraventricular pressure difference (IVPD) calculation. CMM sweep speed and heartbeat variations impact the accuracy of IVPD calculation. Proper orthogonal decomposition (POD) is used to decompose and reconstruct a representative CMM scan from multiple heartbeats, with reduced noise and improved resolution. For three demonstration subjects, at least 9 beats were recorded at sweep speeds of 25, 50, 75, 100, and 150 mm/s. For all subjects, the beats from the 25 mm/s group resulted in low IVPD (median values: 1.93, 1.94 and 3.15 mmHg) compared to the 150 mm/s group (median values: 3.67, 3.98 and 5.18 mmHg). Reconstructed heartbeats for these subjects returned IVPD of 4.74, 3.23, and 5.14 mmHg. These results demonstrate the strong dependence of IVPD on the temporal resolution and that the proposed reconstruction method can return more accurate IVPDs for low resolution CMMs. This new method was applied to 5 clinical cohorts (3 normals, 1 restrictive, and 1 hypertrophied) and returned increased median IVPD from 2.93–4.41 mmHg for Normal 1, 2.14–3.30 mmHg for Normal 2, 1.84–3.64 mmHg for Normal 3, 2.28–3.00 mmHg for restrictive and 1.56–1.69 mmHg for hypertrophied. Our results show that beat-to-beat variations and temporal resolution affect the IVPD. Our new method rectifies low resolutions and beat-to-beat variability of the CMM data and allows for more accurate IVPD measurement independent of scanner acquisition settings and beat variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Aubry, Nadine, Régis Guyonnet, and Ricardo Lima. Spatiotemporal analysis of complex signals: theory and applications. J. Stat. Phys. 64(3-4):683–739, 1991.

    Article  Google Scholar 

  2. Berkooz, Gal, Philip Holmes, and John L. Lumley. The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25(1):539–575, 1993.

    Article  Google Scholar 

  3. Claessens, T. E., J. De Sutter, D. Vanhercke, P. Segers, and P. R. Verdonck. New echocardiographic applications for assessing global left ventricular diastolic function. Ultrasound Med. Biol. 33(6):823–841, 2007.

    Article  PubMed  Google Scholar 

  4. Devereux, R. B., D. R. Alonso, E. M. Lutas, G. J. Gottlieb, E. Campo, I. Sachs, and N. Reichek. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am. J. Cardiol. 57(6):450–458, 1986.

    Article  CAS  PubMed  Google Scholar 

  5. Ebbers, T., L. Wigstrom, A. F. Bolger, B. Wranne, and M. Karlsson. Noninvasive measurement of time-varying three-dimensional relative pressure fields within the human heart. J. Biomech. Eng. 124(3):288–293, 2002.

  6. Firstenberg, M. S., P. M. Vandervoort, N. L. Greenberg, N. G. Smedira, P. M. McCarthy, M. J. Garcia, and J. D. Thomas. Noninvasive estimation of transmitral pressure drop across the normal mitral valve in humans: importance of convective and inertial forces during left ventricular filling. J. Am. Coll. Cardiol. 36(6):1942–1949, 2000.

    Article  CAS  PubMed  Google Scholar 

  7. Greenberg, N. L., S. Krucinski, P. M. Vandervoort, and J. D. Thomas. Importance of scanline orientation for color Doppler M-mode diastolic inflow patterns and pressure gradient calculations. J. Am. Coll. Cardiol. 29(2):49166–49166, 1997.

  8. Greenberg, N. L., P. M. Vandervoort, M. S. Firstenberg, M. J. Garcia, and J. D. Thomas. Estimation of diastolic intraventricular pressure gradients by Doppler M-mode echocardiography. Am. J. Physiol. Heart Circ. Physiol. 280(6):H2507–H2515, 2001.

    CAS  PubMed  Google Scholar 

  9. Greenberg, N. L., P. M. Vandervoort, and J. D. Thomas. Instantaneous diastolic transmitral pressure differences from color Doppler M mode echocardiography. Am. J. Physiol. Heart Circ. Physiol. 271(4):H1267–H1276, 1996.

    CAS  Google Scholar 

  10. Hinkley, D. V. Inference about the change-point from cumulative sum tests. Biometrika 58(3):509–523, 1971.

    Article  Google Scholar 

  11. Kriegseis, J. Common-base proper orthogonal decomposition as a means of quantitative data comparison. Meas. Sci. Technol. 21(8):085403, 2010.

    Article  Google Scholar 

  12. Krittian, Sebastian, Pablo Lamata, Christian Michler, David A. Nordsletten, Jelena Bock, Chris P. Bradley, Alex Pitcher, Philip J. Kilner, Michael Markl, and Nic P. Smith. A finite-element approach to the direct computation of relative cardiovascular pressure from time-resolved MR velocity data. Med. Image Anal. 16(5):1029–1037, 2012.

    Article  PubMed  Google Scholar 

  13. Lang, R. M., M. Bierig, R. B. Devereux, F. A. Flachskampf, E. Foster, P. A. Pellikka, M. H. Picard, M. J. Roman, J. Seward, J. S. Shanewise, S. D. Solomon, K. T. Spencer, M. St John Sutton, and W. J. Stewart. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J. Am. Soc. Echocardiogr. 18(12):1440–1463, 2005.

  14. Little, W. C. Diastolic dysfunction beyond distensibility—adverse effects of ventricular dilatation. Circulation 112(19):2888–2890, 2005.

    PubMed  Google Scholar 

  15. Mosteller, R. D. Simplified calculation of body-surface area. N. Engl. J. Med. 317(17):1098, 1987.

    CAS  PubMed  Google Scholar 

  16. Nagueh, S. F., C. P. Appleton, T. C. Gillebert, P. N. Marino, J. K. Oh, O. A. Smiseth, A. D. Waggoner, F. A. Flachskampf, P. A. Pellikka, and A. Evangelisa. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur. J. Echocardiogr. 10(2):165–193, 2009.

    Article  PubMed  Google Scholar 

  17. Rojo-Álvarez, J. L., J. Bermejo, A. B. Rodríguez-González, A. Martínez-Fernández, R. Yotti, M. A. García-Fernández, and J. Carlos Antoranz. Impact of image spatial, temporal, and velocity resolutions on cardiovascular indices derived from color-Doppler echocardiography. Med. Image Anal. 11(6):513–525, 2007.

    Article  PubMed  Google Scholar 

  18. Rovner, A., R. Smith, N. L. Greenberg, E. M. Tuzcu, N. Smedira, H. M. Lever, J. D. Thomas, and M. J. Garcia. Improvement in diastolic intraventricular pressure gradients in patients with HOCM after ethanol septal reduction. Am. J. Physiol. Heart Circ. Physiol. 285(6):H2492–H2499, 2003.

    CAS  PubMed  Google Scholar 

  19. Sirovich, L. Chaotic dynamics of coherent structures. Phys. D 37(1–3):126, 1989.

    Article  Google Scholar 

  20. Smith, T. R. Low-dimensional modelling of turbulence using the proper orthogonal decomposition: a tutorial. Nonlinear Dyn. 41(1–3):275–307, 2005.

    Article  Google Scholar 

  21. Stewart, K. C., R. Kumar, J. J. Charonko, T. Ohara, P. P. Vlachos, and W. C. Little. Evaluation of LV diastolic function from color M-Mode echocardiography. JACC: Cardiovascular Imaging 4(1):37–46, 2011.

    Article  PubMed  Google Scholar 

  22. Taylor, W. A. Change-Point Analysis: A Powerful New Tool For Detecting Changes. 2000. Retrieved July 16, 2008, from http://www.variation.com/cpa/tech/changepoint.html.

  23. Yotti, R., J. Bermejo, J. C. Antoranz, M. M. Desco, C. Cortina, J. L. Rojo-Alvarez, C. Allue, L. Martin, M. Moreno, J. A. Serrano, R. Munoz, and M. A. Garcia-Fernandez. A noninvasive method for assessing impaired diastolic suction in patients with dilated cardiomyopathy. Circulation 112(19):2921–2929, 2005.

    PubMed  Google Scholar 

  24. Yotti, R., J. Bermejo, M. M. Desco, J. C. Antoranz, J. L. Rojo-Álvarez, C. Cortina, C. Allué, H. Rodríguez-Abella, M. Moreno, and M. A. García-Fernández. Doppler-derived ejection intraventricular pressure gradients provide a reliable assessment of left ventricular systolic chamber function. Circulation 112(12):1771–1779, 2005.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported under a National Institutes of Health R21 Grant No. HL106276-01A1. The authors have no conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlos P. Vlachos.

Additional information

Associate Editor Kerry Hourigan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlachos, P.P., Niebel, C.L., Chakraborty, S. et al. Calculating Intraventricular Pressure Difference Using a Multi-Beat Spatiotemporal Reconstruction of Color M-Mode Echocardiography. Ann Biomed Eng 42, 2466–2479 (2014). https://doi.org/10.1007/s10439-014-1122-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1122-5

Keywords

Navigation