Skip to main content
Log in

Transmural Variation and Anisotropy of Microvascular Flow Conductivity in the Rat Myocardium

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Transmural variations in the relationship between structural and fluid transport properties of myocardial capillary networks are determined via continuum modeling approaches using recent three-dimensional (3D) data on the microvascular structure. Specifically, the permeability tensor, which quantifies the inverse of the blood flow resistivity of the capillary network, is computed by volume-averaging flow solutions in synthetic networks with geometrical and topological properties derived from an anatomically-detailed microvascular data set extracted from the rat myocardium. Results show that the permeability is approximately ten times higher in the principal direction of capillary alignment (the “longitudinal” direction) than perpendicular to this direction, reflecting the strong anisotropy of the microvascular network. Additionally, a 30% increase in capillary diameter from subepicardium to subendocardium is shown to translate to a 130% transmural rise in permeability in the longitudinal capillary direction. This result supports the hypothesis that perfusion is preferentially facilitated during diastole in the subendocardial microvasculature to compensate for the severely-reduced systolic perfusion in the subendocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bassingthwaighte, J. B., T. Yipintsoi, and R. B. Harvey. Microvasculature of the dog left ventricular myocardium. Microvasc. Res. 7:229–249, 1974.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Beard, D. A., and J. B. Bassingthwaighte. Advection and diffusion of substances in biological tissues with complex vascular networks. Ann. Biomed. Eng. 28:253–268, 2000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Chapelle, D., J.-F. Gerbeau, J. Sainte-Marie, and I. E. Vignon-Clementel. A poroelastic model valid in large strains with applications to perfusion in cardiac modeling. Comput. Mech. 46:91–101, 2010.

    Article  Google Scholar 

  4. Chilian, W. M., S. M. Layne, E. C. Klausner, C. L. Eastham, and M. L. Marcus. Redistribution of coronary microvascular resistance produced by dipyridamole. Am. J. Physiol. Heart. Circ. Physiol. 256:H383–H390, 1989.

    CAS  Google Scholar 

  5. Cookson, A. N., J. Lee, C. Michler, R. Chabiniok, E. Hyde, D. A. Nordsletten, M. Sinclair, M. Siebes, and N. P. Smith. A novel porous mechanical framework for modelling the interaction between coronary perfusion and myocardial mechanics. J. Biomech. 45:850–855, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Fry, B. C., J. Lee, N. P. Smith, and T. W. Secomb. Estimation of blood flow rates in large microvascular networks. Microcirculation 19:530–538, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Goldman, D., and A. S. Popel. A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport. J. Theor. Biol. 206:181–194, 2000.

    Article  CAS  PubMed  Google Scholar 

  8. Goto, M., A. E. Flynn, J. W. Doucette, C. M. Jansen, M. M. Stork, D. L. Coggins, D. D. Muehrcke, W. K. Husseini, and J. I. Hoffman. Cardiac contraction affects deep myocardial vessels predominantly. Am. J. Physiol. Heart. Circ. Physiol. 261:H1417–H1429, 1991.

    CAS  Google Scholar 

  9. Hoffman, J. I. E. Transmural myocardial perfusion. Prog. Cardiovasc. Dis. 29:429–464, 1987.

    Article  CAS  PubMed  Google Scholar 

  10. Hyde, E. R., R. Chabiniok, D. A. Nordsletten, and N. P. Smith. Parameterisation of multi-scale continuum perfusion models from discrete vascular networks. Med. Biol. Eng. Comput. 51:557–570, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Hyde, E. R., A. N. Cookson, J. Lee, C. Michler, A. Goyal, T. Sochi, R. Chabiniok, M. Sinclair, D. Nordsletten, J. Spaan, J. P. van den Wijngaard, M. Siebes, and N. P. Smith. Multi-scale parameterisation of a myocardial perfusion model using whole-organ arterial networks. Ann. Biomed. Eng. 42:797–811, 2014.

    Article  PubMed  Google Scholar 

  12. Kaneko, N., R. Matsuda, M. Toda, and K. Shimamoto. Three-dimensional reconstruction of the human capillary network and the intramyocardial micronecrosis. Am. J. Physiol. Heart. Circ. Physiol. 300:H754–H761, 2011.

    Article  CAS  PubMed  Google Scholar 

  13. Kassab, G. S., and Y. C. B. Fung. Topology and dimensions of pig coronary capillary network. Am. J. Physiol. Heart. Circ. Physiol. 267:H319–H325, 1994.

    CAS  Google Scholar 

  14. Kassab, G. S., K. N. Le, and Y. C. B. Fung. A hemodynamic analysis of coronary capillary blood flow based on anatomic and distensibility data. Am. J. Physiol. Heart. Circ. Physiol. 277:H2158–H2166, 1999.

    CAS  Google Scholar 

  15. Kiyooka, T., O. Hiramatsu, F. Shigeto, H. Nakamoto, H. Tachibana, T. Yada, Y. Ogasawara, M. Kajiya, T. Morimoto, Y. Morizane, S. Mohri, J. Shimizu, T. Ohe, and F. Kajiya. Direct observation of epicardial coronary capillary hemodynamics during reactive hyperemia and during adenosine administration by intravital video microscopy. Am. J. Physiol. Heart. Circ. Physiol. 288:1437–1443, 2005.

    Article  Google Scholar 

  16. LeGrice, I. J., B. H. Smaill, L. Z. Chai, S. G. Edgar, J. B. Gavin, and P. J. Hunter. Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. Heart. Circ. Physiol. 269:H571–H582, 1995.

    CAS  Google Scholar 

  17. Lee, J., S. Niederer, D. Nordsletten, I. LeGrice, B. Smaill, D. Kay, and N. Smith. Coupling contraction, excitation, ventricular and coronary blood flow across scale and physics in the heart. Philos. Trans. R. Soc. A 367:2311–2331, 2009.

    Article  Google Scholar 

  18. Lorthois, S., F. Cassot, and F. Lauwers. Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network: Part I: methodology and baseline flow. NeuroImage 54:1031–1042, 2011.

    Article  CAS  PubMed  Google Scholar 

  19. May-Newman, K., O. Mathieu-Costello, J. H. Omens, K. Klumb, and A. D. McCulloch. Transmural distribution of capillary morphology as a function of coronary perfusion pressure in the resting canine heart. Microvasc. Res. 50:381–396, 1995.

    Article  CAS  PubMed  Google Scholar 

  20. McDonagh, P., and J. Y. Hokama. Microvascular perfusion and transport in the diabetic heart. Microcirculation. 7:163–181, 2000.

    Article  CAS  PubMed  Google Scholar 

  21. Poole, D. C., S. Batra, O. Mathieu-Costello, and K. Rakusan. Capillary geometrical changes with fiber shortening in rat myocardium. Circ. Res. 70:697–706, 1992.

    Article  CAS  PubMed  Google Scholar 

  22. Potter, R., and A. Groom. Capillary diameter and geometry in cardiac and skeletal muscle studied by means of corrosion casts. Microvasc. Res. 25:68–84, 1983.

    Article  CAS  PubMed  Google Scholar 

  23. Pries, A. R., and T. W. Secomb. Microvascular blood viscosity in vivo and the endothelial surface layer. Am. J. Physiol. Heart. Circ. Physiol. 289:H2657–H2664, 2005.

    Article  CAS  PubMed  Google Scholar 

  24. Secomb, T., R. Hsu, N. Beamer, and B. Coull. Theoretical simulation of oxygen transport to brain by networks of microvessels: effects of oxygen supply and demand on tissue hypoxia. Microcirculation. 7:237–247, 2000.

    Article  CAS  PubMed  Google Scholar 

  25. Shipley, R. J., and S. J. Chapman. Multiscale modelling of fluid and drug transport in vascular tumours. Bull. Math. Biol. 72:1464–1491, 2010.

    Article  PubMed  Google Scholar 

  26. Smith, A. F. Multi-Scale Modelling of Blood Flow in the Coronary Microcirculation. DPhil Thesis, University of Oxford, 2013.

  27. Smith, N. P., and G. S. Kassab. Analysis of coronary blood flow interaction with myocardial mechanics based on anatomical models. Philos. Trans. R. Soc. A 359:1251–1262, 2001.

    Article  Google Scholar 

  28. Toborg, M. The microcirculatory bed in the myocardium of the rat and the cat. Z. Zellforsch. 123:369–394, 1972.

    Article  CAS  PubMed  Google Scholar 

  29. Tomanek, R. J., J. C. Searls, and P. A. Lachenbruch. Quantitative changes in the capillary bed during developing, peak, and stabilized cardiac hypertrophy in the spontaneously hypertensive rat. Circ. Res. 51:295–304, 1982.

    Article  CAS  PubMed  Google Scholar 

  30. van de Hoef, T. P., F. Nolte, M. C Rolandi., J. J. Piek, J. P. van den Wijngaard, J. A. Spaan and M. Siebes. Coronary pressure-flow relations as basis for the understanding of coronary physiology. J. Mol. Cell. Cardiol. 52:786–793, 2012.

  31. van den Wijngaard, J. P. J. C. Schwarz, P. van Horssen, M. G. van Lier, J. G. Dobbe, J. A. Spaan, and M. Siebes. 3D imaging of vascular networks for biophysical modeling of perfusion distribution within the heart. J. Biomech. 46:229–239, 2013.

  32. Vinnakota, K. C., and J. B. Bassingthwaighte. Myocardial density and composition: a basis for calculating intracellular metabolite concentrations. Am. J. Physiol. Heart. Circ. Physiol. 286:1742–1749, 2004.

    Article  Google Scholar 

  33. Waller, C., E. Kahler, K. H. Hiller, K. Hu, M. Nahrendorf, S. Voll, A. Haase, G. Ertl, and W. R. Bauer. Myocardial perfusion and intracapillary blood volume in rats at rest and with coronary dilatation: MR imaging in vivo with use of a spin-labeling technique. Radiology 215:189–197, 2000.

    Article  CAS  PubMed  Google Scholar 

  34. Wieringa, P. A., J. A. E. Spaan, H. G. Stassen, and J. D. Laird. Heterogeneous flow distribution in a three dimensional network simulation of the myocardial microcirculation—a hypothesis. Microcirculation 2:195–216, 1982.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the Virtual Physiological Rat Project (NIH1 P50 GM094503-1), the EPSRC (Engineering and Physical Sciences Research Council) under grant numbers EP/F043929/1 and EP/G007527/2, and Award No. KUK-C1-013-04 made by King Abdullah University of Science and Technology (KAUST). The authors would also like to thank Prof. Timothy W. Secomb (University of Arizona) for helpful scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas P. Smith.

Additional information

Associate Editor Dan Elson oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 976 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, A.F., Shipley, R.J., Lee, J. et al. Transmural Variation and Anisotropy of Microvascular Flow Conductivity in the Rat Myocardium. Ann Biomed Eng 42, 1966–1977 (2014). https://doi.org/10.1007/s10439-014-1028-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1028-2

Keywords

Navigation